

JBA consulting

Dalbeattie Flood Study

Final Report

August 2016

Dumfries and Galloway Council Council Headquarters Council Offices English Street Dumfries DG1 2DD

JBA Project Manager

Angus Pettit BSc MSc CEnv CSci MCIWEM C.WEM Unit 2.1, Quantum Court Research Avenue South Heriot Watt Research Park Riccarton Edinburgh EH14 4AP

Revision History

Revision Ref / Date Issued	Amendments	Issued to
V1.0 / 29 January 2016	-	Brian Templeton
V2.0/ 5 August 2016	Updates to text following comments from Council. Plans updated and enlarged.	Brian Templeton Ross Gibson

Contract

This report describes work commissioned by James McLeod, on behalf of Dumfries and Galloway Council, by a letter dated 10 June 2015. Dumfries and Galloway's representative for the contract was James Mcleod of Dumfries and Galloway Council. David Cameron, Robert Hooper, Jonathan Garrett, Barney Bedford and Angus Pettit of JBA Consulting carried out this work.

Prepared by	David Cameron BSc PhD MCIWEM CWEM CSci
	Senior Chartered Analyst
Prepared by	Angus Pettit BSc MSc CEnv MCIWEM C.WEM CSci
	Principal Analyst
Reviewed by	David Bassett BSc MSc CEnv MCIWEM C WEM
	Director

Purpose

This document has been prepared as a Final Report for Dumfries and Galloway Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Dumfries and Galloway Council.

Acknowledgements

JBA wishes to thank SEPA for providing hydrometric information.

JBA would like to thank Brian Templeton for providing assistance and information to support the project.

Copyright

© Jeremy Benn Associates Limited 2016

Carbon Footprint

A printed copy of the main text in this document will result in a carbon footprint of 627g if 100% post-consumer recycled paper is used and 798g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is aiming to reduce its per capita carbon emissions.

Executive Summary

Reason for works

In response to Dalbeattie's long flood history the Dalbeattie and District Flood Prevention Scheme was implemented in the early 1981. This included flood defences in Dalbeattie and Kirkgunzeon which had the primary aim of mitigating river flooding of these towns from the Dalbeattie Burn, Kirkgunzeon Lane and Drumjohn Burn.

Analysis of flood incidents in Dalbeattie, annual maximum flows and rainfall data suggests that whilst Dalbeattie has witnessed a number of flood issues in the recent past, none of these have been as a result of direct overtopping of the defences.

The flood defence assets are generally in a good condition, but are in need of some basic maintenance and inspection.

An assessment to review the condition and standard of defences and to update previous studies was commissioned by Dumfries and Galloway Council.

Hydrology

Flood flow estimates for design purposes have been undertaken using standard FEH methodologies. A range of design flows have been provided using the preferred FEH Statistical Method.

Whilst the flow estimates are carried out using standard methodologies, without any gauging of the watercourses the design flow estimates should be treated with caution. Tests have been undertaken on the BFI value used. An adjustment of this parameter is not deemed necessary but could increase flood flows significantly. The impact of this on flood mapping is discussed within the main report.

Any flood defence improvements or significant capital spent would benefit from some flow gauging over a period of time to improve the flow estimates.

Risk

The flood defences have a good standard of protection and in many areas are providing a 200 year standard of protection. Uncertainty in the hydrology for this ungauged catchment should be noted in reference to this standard of protection.

The majority of flood risk relates to the Edingham Burn. This area was not included as part of the FPS and is at risk from floods in excess of the 5 year flood (i.e. at risk at the 10 year flood). Many properties in this Edingham Burn area are have floor levels that are raised above ground levels reducing the impact of the flooding to properties.

Freeboard on many flood defences is suitable. However for assets at Colliston Park (Asset 7) and at the bowling green (Asset 17) the level of freeboard is insufficient at the 200 year standard of protection and would be impacted under current climate change scenarios. Asset 7 is also in poor condition and would benefit from being raised and improved.

Approximately 16 properties are at risk from the 200 year return period flood with 51 at risk when climate change estimates are taken into account.

Flood mitigation options

Overall the FPS assets are in good to fair condition but could benefit from minor upgrades, more regular inspection and maintenance of some elements. However, there are a number of short term or small scale measures that could benefit the town of Dalbeattie from future flooding. These are summarised in the main report.

A full long list and short list of options has been considered. The following options have been considered further in the option and economic appraisal:

- Do Minimum
- Option 1 Property Level Protection
- Option 2 200 year SOP for Edingham Burn
- Option 3 200 year SOP with an allowance for climate change for Edingham Burn and the rest of Dalbeattie.

Flood risk to the Kirkgunzeon village is minimal as the flood defences present offer a good standard of protection.

Expected benefits

Flood damages for the Do Minimum and Do Something options have been assessed using standard FHRC Multi-Coloured Manual approaches. Flood damages avoided for each option are given below:

- Option 1 (PLP) £1,112k
- Option 2 (Defence to 200 yr standard on Edingham Burn) £1,112k
- Option 3 (Defence to Dalbeattie and Edingham Burn with climate change included) -£1,335

Investment appraisal

A summary of the flood damage results for the proposed options are provided in the Table below along with the calculated costs for each option. All options assessed are economically viable with benefit-cost ratios greater than 2 for all options.

Summary of benefit-cost calculation (£k)

	Do Minimum	Option 1	Option 2	Do Minimum with climate change	Option 3
Total PV costs (£k)	-	179	331	-	424
Total PV costs + Optimism bias (£k)	-	286	530	-	678
PV damage (£k)	1,322	210	210	1,609	274
PV damage avoided (£k)	-	1,112	1,112	-	1,335
Benefit-cost ratio	-	3.5	2.1	-	2.0
Incremental BCR	-	-	0.5	-	1.5

Recommendations

A number of short term quick wins and longer term flood mitigation measures have been recommended. The PLP option has the highest benefit-cost ratio although the two structural options are both cost effective with BCRs greater than 2.

Option 1 is therefore preferred but all of the options assessed could be developed in the longer term. The use of Option 1 as a short term method, perhaps progressed using the Council's subsidy scheme would be beneficial.

Contents

Execut	ive Summary	iii
1	Introduction and site description	1
1.1 1.2 1.3 1.4 1.5	Background Report objectives and approach Extent of study area and description Catchment description Return Period and Probability	1 1 3 4
2	Existing flood defence measures	6
2.1 2.2 2.3	Background Current condition Recommendations	6 7 8
3	Current condition of culverts	9
3.1 3.2	Impact of condition on fluvial flood risk Recommendations	11 11
4	Flood History	12
4.1 4.2 4.3 4.4	Introduction Historic flooding Analysis of D&G flood records Conclusion	12 12 13 15
5	Flood Estimation	16
5.1 5.2 5.3	Flood frequency estimation using FEH Design hydrographs Summary of hydrology	16 18 19
6	Hydraulic Model	20
6.1 6.2 6.3 6.4 6.5 6.6 6.7	Introduction Model Overview Topographic Datasets Model Setup Model calibration and validation Assumptions and uncertainties Modelled Scenarios	20 20 25 29 29 31
7	Model results	32
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Introduction Flood map results Tidal risk Freeboard modelling Bridge capacity review Properties at risk Effectiveness of FPS Summary of flood risk	32 34 35 37 39 43 50
8	Urban and surface water flood risk	51
9	Options for flood mitigation	53
9.1 9.2 9.3 9.4 9.5	Relevant legislation Guideline standard of protection Long list of options Options in relation to SEPA Flood Risk Management Strategies Recommendations and quick wins	53 53 53 55 56
10	Short list of options	62
10.1	Do Nothing	62

JBA consulting

2015s2898 - Dalbeattie Flood Study - Final Report v2.0.docx

Contents

10.2	Do Minimum	62
10.3	Option 1 - property level protection	62
10.4	Option 2 - Raised flood defences along Edingham Burn to provide a 1 in 200 year standard of protection	63
10.5	Option 3 - Option 2 plus improvements to Asset 7 and Asset 17	64
10.6	Summary of options assessed	65
11	Damage methodology	66
11.1	Direct damages - methodology	66
11.2	Intangible damages	69
11.3	Indirect damages	69
12	Summary of total flood damages	71
12.1	Properties at risk	71
12.2	Do Minimum event damages	71
12.3	Option 1 - Property Level Protection Damages	73
12.4	Option 3 - 200 year SOP in Dalbeattie with climate change	74
12.6	Summary of flood damages	76
13	Cost estimates	77
13 1	Price Base Date	77
13.2	Whole life cost estimates	77
13.3	Optimism bias	77
13.4	Option 1 - Property Level Protection costs	77
13.5	Option 2 and 3 - Raised defences	78
13.6	Cost summary	80
14	Benefit-cost analysis	81
14.1	Introduction	81
14.2	Guidance and standard data	81
14.3	Benefit-cost results	81
15	Conclusion and Recommendations	83
15.1	Hydrometry and warning recommendations	83
15.2	Asset maintenance recommendations	83
T5.3	Options appraisal	83
Annen	dicae	85
	Annendix A - Flood Estimation	07
B	Appendix R - Asset summary	103
C	Appendix C - Culvert Hydraulic analysis	105
D	Appendix C - Eland Mana	112
5		112
F	Appendix 6 - Flood Maps	. 115
E	Appendix G - Flood Maps	115
E F	Appendix G - Flood Maps Appendix E - Flood levels Appendix F - Properties at risk	115
E F G	Appendix G - Flood Maps Appendix E - Flood levels Appendix F - Properties at risk Appendix G - Natural Flood Management Report	113 115 117 119

List of Figures

Figure 1-1: Dalbeattie (1) and Edingham Burn (2) study areas	. 2
Figure 1-2: Kirkgunzeon study area (3) including Drumjohn Burn	. 3
Figure 1-3: Kirkgunzeon Lane catchment	.4
Figure 2-1: Asset locations and asset reference number in Dalbeattie	. 6
Figure 2-2: Asset locations and asset reference number in Kirkgunzeon	.7
Figure 3-1: Culvert locations and survey for culverts 1-6, 8, 9	. 10
Figure 3-2: Culvert location and survey for culvert 7	. 10
Figure 3-3: Culvert location and survey for culvert 10	. 11
Figure 4-1: Location of 'fluvial' flood events in Dalbeattie (2002-2015)	. 14
Figure 4-2: Pluvial flood incidents	. 15
Figure 5-1: Scaled ReFH2 hydrographs for the Kirkgunzeon Lane at Dalbeattie	. 18
Figure 6-1: Dalbeattie model schematic	. 26
Figure 6-2: Kirkgunzeon model schematic	. 27
Figure 7-1: Flood depth map for the 200 year (0.5%) modelled flood event in Dalbeattie.	. 32
Figure 7-2: Flood depth map for the 200 year (0.5%) modelled flood event in Kirkgunzeon	. 33
Figure 7-3: Flow path around Bar Hill	. 34
Figure 7-4: Tidal flood risk	. 35
Figure 7-5: Comparison of modelled flood extent with and without 300mm freeboard adjustment	. 36
Figure 7-6: Comparison of modelled flood extent with and without 300mm freeboard adjustment	. 36
Figure 7-7: Comparison of modelled flood extent with and without 300mm freeboard adjustment	. 37
Figure 7-8: Comparison between blockage and baseline run in Dalbeattie	. 38
Figure 7-9: Surveyed threshold levels in Dalbeattie	. 40
Figure 7-10: Surveyed threshold levels in Kirkgunzeon	. 40
Figure 7-11: Properties at risk and standard of protection	. 41
Figure 7-12: Properties at risk and standard of protection, at a larger scale	. 42
Figure 7-13: Properties at risk and standard of protection in Kirkgunzeon	. 43
Figure 7-14: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, upstream of High Street Bridge - Right bank	. 44
Figure 7-15: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, upstream of High Street Bridge - Left bank	. 44
Figure 7-16: Defence height vs. water surface elevation at FPS Operation 7 on the Kirkgunzeon Lane in Dalbeattie, downstream of pond in Colliston Park - Perpendicular to Left bank	. 45
Figure 7-17: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, downstream of High Street Bridge - Right bank	. 46
Figure 7-18: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, downstream of High Street Bridge - Left bank	. 46
Figure 7-19: Defence height vs. water surface elevation on the Edingham Burn in 2015s2898 - Dalbeattie Flood Study - Final Report v2.0.docx	

JBA consulting

Dalbeattie - Right bank47
Figure 7-20: Defence height vs. water surface elevation on the Edingham Burn in Dalbeattie - Left bank
Figure 7-21: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Maidenholm - Right bank48
Figure 7-22: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Kirkgunzeon - Right bank
Figure 7-23: Defence height vs. water surface elevation on the Drumjohn Burn northeast of Kirkgunzeon - Left bank
Figure 8-1: 200 year surface water flood risk for Dalbeattie including the CCTV surveyed culverts
Figure 9-1: Location reference plan for recommendations and quick wins identified in Table 9-2
Figure 9-2: Location reference plan for recommendations and quick wins identified in Table 9-2
Figure 10-1: Examples of PLP (automatic airbrick and door guard)
Figure 10-2: Proposed defence location along Edingham Burn to protect a large area of
Figure 11-1: Aspects of flood damage
Figure 11-1: Aspects of flood damage 66 Figure 11-2: Loss Probability Curve 67 Figure 12-1: Loss probability curve for the Do Minimum baseline 71 Figure 12-2: Interval benefits for the Do Minimum baseline 72 Figure 12-3: Total PV damages for the Do Nothing by damage component (£k) 73 Figure 12-4: Difference in flows under the climate change scenario 75 Figure 6. Location map of Edingham Burn culvert 105 Figure 7. Location map of culvert adjacent to A711 106 Figure 8. Long profile model output for Edingham Burn culvert - no blockage 110
Figure 11-1: Aspects of flood damage
Figure 11-1: Aspects of flood damage

List of Tables

Summary of benefit-cost calculation (£k)	iv
Table 1-1: Return period and equivalent annual probability	4
Table 2-1: Asset condition summary	7
Table 3-1: CCTV culvert inspection data	9
Table 4-1: Historic flood events/evidence	12
Table 4-2: Recent Dalbeattie flood records by flood source	13
Table 4-3: Peak flows on the	14

Table 5-1: Catchment descriptors	17
Table 5-2: Design peak flows	17
Table 5-3: Comparison of design peak flows with and without the adjustment of BFI	18
Table 6-1: Bridges on the Kirkgunzeon Lane in Dalbeattie	21
Table 6-2: Bridges on the Edingham Burn, Dalbeattie	23
Table 6-3: Bridges on Kirkgunzeon Lane and Drumjohn Burn in Kirkgunzeon	23
Table 6-4: Dalbeattie Burn model roughness values	28
Table 6-5: Manning's n roughness values used for 2D modelling	29
Table 7-1: Bridge capacity	37
Table 7-2: Summary of model results	39
Table 7-3: Summary of properties at risk from the Dalbeattie Burn	41
Table 9-1: Available flood alleviation options for Dalbeattie	54
Table 9-2: Short term recommendations and quick wins	57
Table 10-1: Number of properties at risk and protected	63
Table 11-1: Damage considerations and method	67
Table 11-2: Proportion of social grades within Dalbeattie	69
Table 11-3: Total weighted factors by social grade group	69
Table 12-1: Number of properties flooded within appraisal area for the Do Minimum Scenario	71
Table 12-2: Total property flood damage for each scenario (£) (prior to capping)	71
Table 12-3: Top 10 highest damage contributors for the Do Minimum Scenario	72
Table 12-4: Do Minimum flood damage (£k)	73
Table 12-5: Comparison of Do Minimum and PLP properties at risk and direct property damages (£k)	73
Table 12-6: Summary of flood damages for direct defence option (£k)	74
Table 12-7: Summary of flood damages for direct defence option (£k)	74
Table 12-8: Impact of climate change on Do Minimum scenario (£k)	76
Table 13-1: Properties needing PLP (£/m)	78
Table 13-2: Cost per property by flood depth and property type	78
Table 13-3: Wall cost per metre (£/m)	79
Table 13-4: Wall raising cost per metre (£/m)	79
Table 13-5: Unit and total estimated defence costs - 200 year event	79
Table 13-6: Cash costs and total whole life (PVc) costs for Option 2 and Option 3 (£k)	79
Table 13-7: Option cost summary with optimism bias (£k)	80
Table 14-1: Summary of benefit-cost calculation (£k)	81
Table C-1: FEH Statistical Estimates without BFI and SPR adjustments	88
Table C-2: FEH Statistical Estimates with BFI and SPR adjustments	88
Table C-3: Comparison of Rainfall Runoff methods for Castle Cottage	88
Table 4. Photographs of culvert inlets and outlets	107
Table 5. Modelled structures and model setup parameters for Edingham Burn and A711 culverts	107

Table 6. Modelled culvert capacities in response to blockage for	109
Table F-1: Key to properties at risk	117
Table F-2: Properties at risk of flooding and depths for range of flood events modelled	117

Abbreviations

1D	One Dimensional (modelling)
2D	Two Dimensional (modelling)
ALTBAR	Mean catchment altitude (m above sea level)
AMAX	Annual Maximum
BFI	Base Flow Index
BFIHOST	Base Flow Index estimated from soil type
C1	Benchmarking system using GPS
CAR	Controlled Activity Regulations (2010)
CCTV	Closed Circuit Television
DPLBAR	Index describing catchment size and drainage path configuration
DS	Downstream
DTM	Digital Terrain Model
EN	English Nature
FARL	FEH index of flood attenuation due to reservoirs and lakes
FEH	Flood Estimation Handbook
FPEXT	FEH index describing floodplain extent
FPS	Flood Protection Scheme
FRA	Flood Risk Assessment
GIS	Geographical Information System
HEC-RAS	Hydrologic Engineering Center – River Analysis System
ISIS	Hydrology and hydraulic modelling software
Lidar	Light Detection And Ranging
mAOD	metres Above Ordnance Datum
NGR	National Grid Reference
OS	Ordnance Survey
OS NGR	Ordnance Survey National Grid Reference
PVc	Present Value Cost
QMED	Median Annual Flood (with return period 2 years)
SAAR	Standard Average Annual Rainfall (mm)
SEPA	Scottish Environment Protection Agency
SFRA	Strategic Flood Risk Assessment
SPR	Standard percentage runoff
SPRHOST	Standard percentage runoff estimated from soil type
Тр	Time to Peak

TUFLOWTwo-dimensional Unsteady FLOW (a hydraulic model)URBEXTFEH index of fractional urban extentUSUpstream

1 Introduction and site description

1.1 Background

This flood study was commissioned by Dumfries and Galloway Council in October 2014 in order to gain a greater understanding of the flood mechanisms and improve upon SEPA's Flood Risk Management maps in Dalbeattie and provide an appraisal of options to reduce flood risk.

The council commissioned a Strategic Flood Risk Assessment (SFRA) for Dumfries and Galloway in 2007. This study ranked Dalbeattie 5th in a list of priority areas for further investigation into flood risk based on the number of properties potentially at risk of flooding. The assessment was based on 5 categories; economics, social, environmental, planning and frequency of flood risk for all towns within the council area.

In 2015, as part of the Flood Risk Management (Scotland) Act 2009, SEPA has completed a review of flood risk in the Dalbeattie area as part of the Solway Local Plan District. Within this it identified the Potentially Vulnerable Area (PVA) (reference 14/19). Based on SEPA's Flood Risk Management Strategy and current SEPA mapping, Dalbeattie has 220 residential properties and 60 non-residential properties at risk and an estimated £600,000 of Annual Average Damages (AAD).

In response to ongoing and proactive flood management for Dalbeattie and the proposals associated with the FRMS, this flood study was commissioned to improve on past flood mapping and to re-appraise the flood defence scheme.

1.2 Report objectives and approach

The aim of the study will enable Dumfries and Galloway Council to make an informed decision with regard to the current and future level of flood risk from the Dalbeattie Burn and the Kirkgunzeon Lane in Dalbeattie and Kirkgunzeon. The study will produce flood maps for different return periods, outline flood mitigation options and assess the economic viability of the preferred flood mitigation option.

Hydraulic analysis and inundation mapping has been carried out both with and without hydraulic structures for the following return periods (Annual Probability (AP)):

- 1:2 (50% AP)
- 1:10 (10% AP)
- 1:25 (4% AP)
- 1:50 (2% AP)
- 1:100 (1% AP)
- 1:200 (0.5% AP)
- 1:200 + Climate Change (0.5% AP considering climate change)
- 1:1000 (0.1% AP)

Outline designs have been proposed to achieve a:

- a. 0.5% AP with an allowance for climate change level of protection
- b. Quick wins to immediately mitigate river flood risk.

1.3 Extent of study area and description

There are three main areas of interest as part of the original FPS and as part of this study:

- Dalbeattie town
- Kirkgunzeon
- Culvert to the north of Dalbeattie on Edingham Burn

Dalbeattie is located approximately 20km SW of Dumfries and the neighbouring village of Kirkgunzeon sits 14km SW of Dumfries. The Dalbeattie Burn runs through the centre of Dalbeattie. Figure 1-1 shows the two main areas of interest in Dalbeattie and on the Edingham Burn.

Figure 1-1: Dalbeattie (1) and Edingham Burn (2) study areas

Kirkgunzeon lies to the east and west of the Kirkgunzeon Lane watercourse and the Drumjohn Burn runs to the northeast. Figure 1-2 shows the main areas of interest in Kirkgunzeon.

The study area for flood mapping extends along both banks of the Kirkgunzeon Lane watercourse. In addition, the Edingham Burn is included in the analysis to cover the urban reach of this watercourse within Dalbeattie.

1.4 Catchment description

The watercourse most relevant to the Dalbeattie FPS is the Kirgunzeon Lane (also known as the Dalbeattie Burn). The Kirgunzeon Lane flows in an approximately southerly direction and has a catchment area of 96 km² at Dalbeattie. The catchment land use is typically grazing with some forestry. The area of the catchment at Dalbeattie is underlain by sedimentary bedrock (wacke) with superficial deposits of alluvium and till¹.

The Kirgunzeon Lane ultimately flows into the Urr Water immediately downstream of Dalbeattie and discharges into the Solway Firth about 10 km downstream. The lower reach of the Kirgunzeon Lane at Dalbeattie is within the tidal limit. Several subcatchments of the Kirgunzeon Lane are also of relevance for this flood protection study. These include: the Drumjohn Burn upstream of the confluence with the Kirkgunzeon Lane and the Edingham Burn and the tributary of the Edingham Burn at Castle Cottage.

All of these watercourses are ungauged. The nearest SEPA gauging station (number 80001) is located on the Urr Water catchment (Figure 1-3), less than 1 km west of Dalbeattie. This gauging station has been in operation since 1963 and is included within the HiFlows-UK dataset and is listed as being suitable for both QMED estimation and inclusion in pooling groups² and was used in much of the flood estimation approach described in subsequent sections.

¹ http://mapapps.bgs.ac.uk/geologyofbritain/home.html

² http://nrfa.ceh.ac.uk/data/station/peakflow/79004

Figure 1-3: Kirkgunzeon Lane catchment

1.5 Return Period and Probability

For flood frequency analysis, the probability of an event occurring is expressed as a return period. The return period on the annual maximum scale, T, is defined as the average interval between years containing one or more floods exceeding a flow Q(T). In the Flood Estimation Handbook (FEH), the flood with return period T is referred to as the T-year flood.

A useful term closely linked to return period is the annual probability, AP, which is the probability of a flood greater than Q(T) occurring in any year. This is simply the inverse of T:

AP = 1/T

For example, there is a 1 in 100 chance of a flood exceeding the 100-year flood in any one year. A full list of typical return periods and APs used for flood management is shown in the table below.

Return Period	Annual Probability
	[AP] (%)
2 year	50
5 year	20
10 year	10
25 year	4
30 year	3.33
50 year	2
75 year	1.33
100 year	1
200 year	0.5
500 year	0.2
1000 year	0.1

Table 1-1: Return period and equivalent annual probability

It is very important to realise that a flood with a return period of T years has a finite probability of occurring during any period of duration less than T years. The probability p that a T year flood will occur at least once in an N year period is given by the "risk equation":

$P = 1 - (1 - 1/T)^N$

This equation indicates that over a ten year period (such as the 10 years since the last flood), the probability of a 100 year flood occurring is 10%. This increases to 34% for a 25 year flood occurring in a 10 year period.

2 Existing flood defence measures

2.1 Background

In 1981 a Flood Protection Scheme (FPS) was installed in Dalbeattie and Kirkgunzeon which had the primary aim of mitigating river flooding of these towns from the Dalbeattie Burn, Kirkgunzeon Lane and Drumjohn Burn.

The scheme was split into three areas which comprised the following:

- Drumjohn Burn upstream of Drumjohn Bridge: aiming to alleviate flooding on the A711 and in the caravan park at Mossfoot Bridge.
- Kirkgunzeon Lane at Corra Bridge: aiming to protect property and the road at Corra from the Kirkgunzeon Lane.
- Dalbeattie area: aiming to protect the town of Dalbeattie.
 - There was also a small culvert added or improved in the old railway embankment to the north of Dalbeattie on Edingham Burn.

A figure of the assets constructed in the scheme are compiled in Figure 2-1 and Figure 2-2 (also provided as an A3 plan in the Figures Section). An asset condition summary report is provided in Appendix B.

Figure 2-1: Asset locations and asset reference number in Dalbeattie

2.2 Current condition

Dumfries and Galloway Council's requested JBA to carry out a condition assessment of the existing flood defences which form the 1981 FPS in terms of structural condition, overall effectiveness and suggested improvements. This condition assessment included inspection of the culverts which form part of the FPS.

Angus Pettit (Principal Flood Analyst) of JBA Consulting carried out the assessment of FPS infrastructure during walk overs on the 22 June 2015 and 20 October 2015 based on visual observations. No testing of the infrastructure took place.

A detailed condition assessment of the defences is provided in Appendix B. The condition assessment included flood defence structures as part of the FPS as well as other walls, which although not part of the FPS, may influence flood flows.

2.2.1 Current standard of defences

The current condition grade of each flood defence asset was determined using the Environment Agency Condition Assessment Manual. Results for each asset are provided in Table 2-1. The condition of the assets is generally good to fair (average Grade 2-3), with one graded 4 (poor). Further structural inspection and maintenance of these assets is recommended to ensure that they are fit for purpose.

Study Area	Asset numbers	Condition grade	Poor condition assets
Dalbeattie area	1-27	80% Grade 2 15% Grade 3	Asset No. 7 (Embankment) - Grade 4 (Poor)
Edingham Burn	1	100% Grade 2	-
Kirkgunzeon	29-34	100% Grade 3	-

Table 2-1: Asset condition summary

2.3 Recommendations

The flood defence assets are generally in a good condition, but are in need of some basic maintenance and inspection. A full list of quick wins is proposed in Section 9.5. Some reach wide maintenance measures and recommendations are made below:

- There are many unflapped outfalls present along the Dalbeattie Burn. These should be checked for presence and condition, any missing should be installed and an inspection and maintenance regime set up to ensure the long term maintenance of these outflalls.
- The presence of Water Hemlock-dropwort is prevalent in some reaches of the Kirkgunzeon Lane in Dalbeattie and the Edingham Burn. Management or monitoring of this recommended to ensure good channel conveyance is maintained.
- Some channel reaches are overgrown and in need of maintenance. Some reaches were removed of vegetation as part of the FPS works.
- Some culverts are blocked with sediment. This should be removed.

3 Current condition of culverts

The culverts were inspected internally via a CCTV survey carried out by Underground Inspection Services 7 September 2015. A full survey report has been supplied to Dumfries and Galloway Council, with a summary of the condition of the culverts below. Table 3-1 provides a summary of the inspections undertaken. Figures 3-1 to 3-2 show the location of the culverts (also provided as an A3 plan in the Figures section of the report).

Table 3-1: CCTV culvert inspection data

Category	Comments
Date of inspection(s)	CCTV Survey - 07 September 2015
Inspector(s)	Underground Inspection Services
Nature of culverts	CCTV footage was taken along 8 distinct culverts. Full details are provided in the CCTV report and in the summary below.
Location of culverts	The culverts are listed in the table below and shown in Figure 3-2 and Figure 3-3.
Nature of inspection(s)	The inspections were walkover surveys and visual inspection of the culvert inlets and outlets. A full CCTV survey was undertaken by UIS. No jetting or directional drilling was undertaken to clear debris or blockages.
Comments from Residents	No comments were received from residents regarding any of the culverts.
Associated reports	UIS CCTV Survey Report (J36714), 17-09-2015

Culvert ref.	Location	Survey complete?
1	Dalbeattie - west bank	Yes
2	Dalbeattie - Barhill Road	Yes
3	Dalbeattie - Dalbeattie High School	Yes
4	Dalbeattie - west bank	Yes
5	Dalbeattie - east bank	Partial - restricted access
6	Dalbeattie - east bank	Partial - abandoned due to debris
7	Kirkgunzeon - A711	Yes
8	Dalbeattie - east bank	No. Poor access. Unable to find culvert.
9	Dalbeattie - Colliston Park	Pipe surcharged at upstream end.
10	Edingham Burn - Old railway culvert	No - 60% blocked with sediment

Figure 3-1: Culvert locations and survey for culverts 1-6, 8, 9

Figure 3-2: Culvert location and survey for culvert 7

Reproduced by permission of Ordnance Survey on behalf of HMISO. D Crown Copyright and database light 2015. Ordnance Survey Licence number 100016994.

JBA consulting Figure 3-3: Culvert location and survey for culvert 10

Reproduced by permission of Orthance Survey on behalf of H850. O Crown Copylight and database right 2015. Orthance Survey Licence number 1000/9894.

3.1 Impact of condition on fluvial flood risk

Culverts play an important role in conveying surface water from street level to the nearest suitable watercourse. When the culverts become choked with debris, such as culvert 1 and 3, they can no longer carry out their intended purpose. Likewise where flap valves (installed on the culvert outlets to prevent flood flows in the channel flowing back up the culvert and surge charging at street level) are seized in an open position they no longer perform their function. The culvert outlet inverts are positioned close to normal water elevations in the channel. By maintaining correctly operating flap valves it will also help to keep the culvert free of debris that may get washed into the culvert during higher than normal flows.

3.2 Recommendations

It is clear from the CCTV footage that the culverts are in need of regular maintenance. Major blockages should be removed as a priority. Where culverts are damaged or cracked regular inspections should be carried out to monitor crack progression and ingress of material from the breaks. If it is deemed necessary the damaged culverts should be repaired or replaced. Pipe slip-lining or pipe "bursting" techniques could be considered.

Some of the outlets have flap valves. Some of these were not found during the survey. A full review of all flap valves is required to locate missing outfalls, check the condition and presence of flap valves and the repair and maintenance schedule implemented to ensure that where appropriate high water levels are not transmitted through the flood protection.

Culvert recommendation summary:

- Remove blockages
- Monitor pipe condition
- Repair, fit or replace flap valves
- Establish regular inspection and cleaning maintenance schedule

4 Flood History

4.1 Introduction

In response to Dalbeattie's long flood history the Dalbeattie and District Flood Prevention Scheme was implemented in the early 1980's which protected property in the vicinity of Drumjohn Bridge, Corra and the some of the area of Dalbeattie by the Dalbeattie Burn. A flood record supplied by Dumfries and Galloway Council as well as an internet search shows that Dalbeattie is also effected by surface water runoff and ground water and is summarised below.

4.2 Historic flooding

Table 4-1: Historic flood events/evidence

Comment	Scale of flood	Year of flood	Source
Comparable to the 1815 flood.	Regional	February 1780	The Times (London, England),Thursday, Oct 05, 1815; pg. 4; Issue 9644
Extensive flood but on a lesser scale to the 1815 flood.	Regional	15-16 November 1807	The Times (London, England),Thursday, Oct 05, 1815; pg. 4; Issue 9644
Three days of torrential rain and high winds caused flooding across Dumfries. The area between the River Nith to New Abbey to New Galloway was the worst affected. The River Nith was said to be out of bank for 20 miles along its length. At New Abbey a bridge which had "stood the buffetings of winter storms for centuries" was washed away. A newly constructed bridge in New Galloway was also washed away as well as several bridges in Moffat area.	Regional	September 1815	The Times (London, England),Thursday, Oct 05, 1815; pg. 4; Issue 9644
At Dalbeattie the excessive rainfall resulted in considerable flooding.	Dalbeattie	3 March 1910	Scotsman Publications
Good deal of flooding in Dalbeattie. Along the valley of the Urr and in other districts a considerable quantity of land lies under water.	Catchment	19 December 1911	Scotsman Publications
All the meadows between Dalbeattie and Southwick through which the Kirkgunzeon Lane runs were in flood on Saturday afternoon.	Catchment	8 February 1915	The Scotsman
Dalbeattie experienced a very severe flood. It damaged people's property and caused a lot of inconvenience.	Dalbeattie	31 October 1977	BBC History
Flooding reported in Dalbeattie	Dalbeattie	10 October 2000	The Mirror
Houses flooded in Dalbeattie -	Dalbeattie /	11 October 2008	The Times

River Nith burst its banks for second times in 3 days. A75, A711 and A714 road closures.	regional		
Two inched of rain fell in 12 hours, Kirgunzeon Lane burst its banks. Roads washed away, Carsphairn flooded, village shops and cottages. A713 in Carsphairn, A762 closed at Dalry and A712 closed at ken Bridge. Colliston Park in Dalbeattie inundated. Fire brigade had to pump water out of a house in Galla Avenue.	Dalbeattie / regional	31 December 2013	The Daily Record
Recorded flood incidents from Dumfries and Galloway Council. Source and frequency discussed further below.	Dalbeattie	From 2002 to 2015	Dumfries and Galloway Council

4.3 Analysis of D&G flood records

A flood data archive was supplied to JBA Consulting by Dumfries and Galloway Council. The records begin in 2002 and continue to present day. 68 counts of flooding have been recorded by the council in Dalbeattie since their official recordings began in February 2002. This data was analysed by flood type. Surface water and pluvial flood events were grouped together. "Other Drainage" accounts for nearly half of the recorded events.

Table 4-2: Recent Dalbeattie flood records by flood source

Flood type	Number of recorded events
Fluvial	8 (+13 assumed fluvial)
Pluvial	8
Surface water	5
Groundwater	1
Sewer	2
Other Drainage or artificial structure	31

4.3.1 Fluvial flooding

There are 8 fluvial flood records. Flooding from Dalbeattie Burn has effected Burnbank Cottage' basement, John Street and ETB Technology. There are 2 recorded instances from Rounall Woods Burn which effected Southwick Road suggesting a fluvial flood risk from the hillsides that drain towards the river through the town. Figure 4-1 shows where the recorded fluvial flood incidents have occurred.

Figure 4-1: Location of 'fluvial' flood events in Dalbeattie (2002-2015)

Most of the 'Assumed Fluvial' records are not located near to the Kirkgunzeon Lane and are more likely to be related to minor culvert or surface water issues rather than flooding from the watercourse itself.

9 of the 21 counts of fluvial flooding correspond to the annual maximum flows in the Urr Water for the year of the flood - a good proxy for peak flows on the Kirkgunzeon Lane. Two of the events located along John Street correspond to peak flows on the Urr for the years 2003 and 2005. Two further records in the downstream industrial estate relate to the peak flow event of 2009.

Table 4-3: Peak flows on the	

Fluvial flood event	Flow (m³/s)	AMAX date
30/11/2003	132.4	29/11/2003
08/01/2005	93.9	08/01/2005
20/11/2009	151.8	19/11/2009

4.3.2 Surface water or Pluvial flooding

Of the 13 recorded instances of pluvial flooding, 6 occurred on either the 9 and 17 August 2004. Flood incidents have been recorded at:

- Tollbar Cottage,
- Along the A711 and High Street
- Back Knowe Crescent
- Munched View
- Boolers Cottage
- Property 4, 11 and 13 on Station Road
- Kerr Cottage
- Garden of 19 Urr Road, 2 Millbrookdown Mill, 22 Glenshalloch Road

Two further flood incidents attributed to "Sewer" (sewers noted as having been over capacity or blocked) also occurred in August 2004 suggesting that this event was significant and lead to flooding problems within the urban area of Dalbeattie. Figure 2-2 shows the location of the 13 flood incidents within Dalbeattie superimposed on the 200 year 3 hour storm event (See Section 8.1.1 for methodology).

Figure 4-2: Pluvial flood incidents

Analysis of the SEPA raingauge in Dalbeattie for the 17 August 2004 which accounts for many of the recorded pluvial events shows a very intense burst of rainfall over a 1 hour and 15 minute period. Approximately 38 mm of rain fell in this period. This high rainfall intensity event has a return period of approximately 84 years.

4.3.3 Ground water

A single incident of ground water flooding has been recorded. The incident occurred on the 7 February 2003 at 1 St James Street.

4.4 Conclusion

Analysis of flood incidents in Dalbeattie, annual maximum flows and rainfall data shows that the town of Dalbeattie has witnessed a number of flood issues in the recent past. Evidence of fluvial flooding is limited and would suggest that no direct overtopping of flood defences has occurred since 2002 (or indeed since the construction of the flood defences). Records of fluvial flooding incidents reflect possible drainage issues or seepage rather than overtopping of defences.

Many of the records suggest other non-river flood problems as a result of direct rainfall over the town, runoff from the woodland to the east of the town and general drainage and sewer capacity problems in isolated locations within the town.

Whilst this report focuses on the river defences and fluvial flood risks, an integrated approach which takes into account all sources of flooding may be beneficial to provide a comprehensive flood solution.

5 Flood Estimation

5.1 Flood frequency estimation using FEH

In order to provide a comprehensive input to the hydraulic model, flow estimates were required for the Kirgunzeon Lane at several locations (Dalbeattie, Corra Bridge, and upstream of the Drumjohn Burn confluence) together with the Drumjohn Burn, Edingham Burn and the tributary of the Edingham Burn at Castle Cottage.

Important inputs into a flood risk assessment are the analysis of historic floods (where data are available), and estimation of flood flows for a range of annual probabilities or 'design' events. Flood estimates for catchments of this size and type are undertaken using the Flood Estimation Handbook (FEH). The FEH offers three methods for analysing design flood flows: the Statistical, the Rainfall Runoff, and hybrid methods. The Statistical method combines estimation of the median annual maximum flood (QMED) at the subject site with a growth curve, derived from one of three methods; (a) a pooling group of gauged catchments that are considered hydrologically similar to the subject site, (b) through single site analysis of a nearby gauge, or (c) a combination of the two through the use of enhanced single site. The Rainfall Runoff method combines design rainfall with a unit hydrograph derived for the subject site (the Rainfall Runoff method has recently been updated as ReFH2³). Hybrid methods involve a combination of the two. Both the Statistical and Rainfall Runoff procedures require the derivation of catchment descriptors. For this study these were initially abstracted digitally using the FEH CD ROM v3.

Adjustments were then made to catchment area (using OS background mapping) and URBEXT (using the national growth model through the year of study, 2015, per FEH Volume 5). The FEH CD-ROM BFIHOST values appeared reasonable in comparison to the available geological information⁴.

With respect to choice of approach for estimating flood flows, the catchments are largely rural with a small influence of attenuating features such as lochs. Given the availability of the Urr Water at Dalbeattie as a potential donor site from a similar nearby catchment, the Statistical method was therefore assumed to be the most reasonable approach for estimating flood flows for all of the watercourses except for the watercourse at Castle Cottage, which has a very small catchment area (0.65 km², (Table 5-2). The FEH Rainfall Runoff method was therefore deemed to be the most appropriate approach for this catchment. A 20% climate change allowance upon the 0.5% AP (200 year) event was applied in each case, per SEPA guidance⁵. Further details of the flow estimates are included in Appendix A.

³ Wallingford Hydro Solutions (WHS) The Revitalised Flood Hydrograph, ReFH2: Technical Guidance. 2015

⁴ http://mapapps.bgs.ac.uk/geologyofbritain/home.html

⁵ SEPA – Technical Flood Risk Guidance for Stakeholders, Version 9.1, June 2015

Table 5-1: Catchment descriptors

Catchment Descriptor	Urr at Dalbeattie Gauging Station (80001)	Kirgunzeon Lane at Dalbeattie	Kirgunzeon Lane at Corra Bridge	Kirgunzeon Lane upstream of Drumjohn Burn	Drumjohn Burn	Edingham Burn	Castle Cottage
AREA (km²)	197.07	96.01 adjusted (94.99 FEH CD-ROM)	41.09 adjusted (40.69 FEH CD-ROM)	23.76 adjusted (23.52 FEH CD-ROM)	13.02 adjusted (12.81 FEH CD- ROM)	4.41 adjusted (4.43 FEH CD-ROM)	0.651 adjusted (0.650 FEH CD- ROM)
ALTBAR (m above sea level)	155	104	128	118	160	55	44
BFIHOST	0.376	0.476	0.481	0.544	0.358	0.414	0.36
DPLBAR (km)	20.25	13.73	7.37	5.27	4.10	2.33	0.71
FARL	0.963	0.951	0.951	0.917	1.000	0.944	1
FPEXT	0.0714	0.1057	0.0724	0.0672	0.0667	0.053	0.0575
SAAR (mm)	1341	1258	1303	1284	1361	1144	1152
SAAR4170 (mm)	1352	1308	1356	1317	1441	1192	1185
SPRHOST (%)	48.39	41.31	40.8	35.97	49.4	48.81	48.53
URBEXT1990	0.0004	0.0060 adjusted (0.0056 FEH CD- ROM)	0.0006 adjusted and FEH CD-ROM	0.0002 adjusted and FEH CD-ROM	0.0000 adjusted and FEH CD-ROM	0.0030 adjusted (0.0028 FEH CD- ROM)	0.0000 adjusted and FEH CD- ROM
URBEXT2000	0.0016	0.0074 adjusted (0.0072 FEH CD- ROM)	0.0007 adjusted and FEH CD-ROM	0.0012 adjusted and FEH CD-ROM	0.0000 adjusted and FEH CD-ROM	0.0088 adjusted (0.0085 FEH CD- ROM)	0.0000 adjusted and FEH CD- ROM

Table 5-2: Design peak flows⁶

Annual Probability (AP)	Return period (years)	Kirgunzeon Lane at Dalbeattie (m ³ /s)	Kirgunzeon Lane at Corra Bridge (m ³ /s)	Kirgunzeon Lane upstream of Drumjohn Burn (m ³ /s)	Drumjohn Burn (m³/s)	Edingham Burn (m³/s)	Castle Cottage (m ³ /s)
50	2	35.9	17.8	8.0	11.6	2.6	0.8
20	5	45.0	22.4	10.0	14.5	3.6	1.1
10	10	51.6	25.6	11.5	16.7	4.3	1.4
4	25	61.0	29.9	13.6	19.7	5.5	1.6
3.33	30	63.0	31.3	14.0	20.3	5.7	1.7
2	50	69.0	34.2	15.3	22.3	6.5	2.1
1.33	75	74.1	36.8	16.5	23.9	7.2	2.3
1	100	77.9	38.7	17.3	25.2	7.7	2.5
0.5	200	88.1	43.7	19.6	28.4	9.1	2.9
0.5 + 20% CC	200 + 20% CC	105.7	52.5	23.5	34.1	10.9	3.5
0.2	500	103.6	51.4	23.0	33.4	11.3	3.6
0.1	1000	117.2	58.1	26.1	37.8	13.4	4.3

⁶ All flows calculated using the FEH Statistical method except for Castle Cottage where the FEH Rainfall Runoff method was used because of the small catchment size (<1 km²).

5.1.1 Comparison between BFI adjusted flows

Tests have been undertaken on the BFI value used. An adjustment of this parameter is not deemed necessary but could increase flood flows significantly. The impact of this on flood mapping is shown in Table 5-3 below. The difference in flow at the 200 year flood is 53m³/s or 60% higher. This is a significant increase. For example, if the BFI adjusted flows are used, a 200 year flood flow would be equivalent to a 10-25 year flood.

Annual Probability (AP)	Return period (years)	Kirkgunzeon Lane at tidal limit (m ³ /s) Unadjusted BFI	Kirkgunzeon Lane at tidal limit (m ³ /s) Adjusted BFI	Difference (m³/s)
50	2	35.9	57.3	21.5
20	5	45.0	72.0	27.0
10	10	51.6	82.5	30.9
4	25	61.0	97.5	36.5
3.33	30	63.0	100.7	37.7
2	50	69.0	110.3	41.3
1.33	75	74.1	118.4	44.4
1	100	77.9	124.6	46.7
0.5	200	88.1	140.8	52.7
0.5 + 20% CC	200 + 20% CC	105.7	165.6	62.0
0.2	500	103.6	187.3	70.1
0.1	1000	117.2	169.0	63.3

Table 5-3: Comparison of design peak flows with and without the adjustment of BFI

5.2 Design hydrographs

Design hydrographs for each watercourse were required for input to the hydraulic model. As the watercourses are ungauged, ReFH2 was used to generate design hydrographs. The magnitudes of the hydrographs were then scaled using peak flow to match the FEH Statistical estimates. Figure 5-1 provides an example series of hydrographs developed for the Kirkgunzeon Lane at Dalbeattie.

Figure 5-1: Scaled ReFH2 hydrographs for the Kirkgunzeon Lane at Dalbeattie

5.3 Summary of hydrology

The above chapter can be summarised as follows:

- Flood flow estimates for design purposes have been undertaken using standard FEH methodologies.
- A range of design flows have been provided using the preferred FEH Statistical Method.
- Whilst the flow estimates are carried out using standard methodologies, without any gauging of the watercourses the design flow estimates should be treated with caution.
- Tests have been undertaken on the BFI value used. An adjustment of this parameter is not deemed necessary but could increase flood flows significantly. The impact of this on flood mapping is discussed.
- Any flood defence improvements or significant capital spent would benefit from some flow gauging over a period of time to improve the flow estimates.
- A standard 20 % for climate change has been used in the assessment.

6 Hydraulic Model

6.1 Introduction

This section of the report presents the models used in this study, along with justification of the decisions made during model development.

6.2 Model Overview

Two separate models have been developed for the study watercourse:

- Kirkgunzeon Lane covering Dalbeattie where the watercourse is known as Dalbeattie Burn, which includes part of the tributary Edingham Burn.
- Kirkgunzeon Lane covering Kirkgunzeon and part of the tributary Drumjohn Burn.

Both areas have been represented with linked 1D-2D hydraulic models. This study involves assessing the standard of protection offered by the FPS and the impact of changes to the FPS. Linked modelling offers the capability of looking at channel and floodplain water levels and flows and their interactions, as well as ease of manipulation of FPS components for options modelling. The linked 1D-2D approach was therefore deemed the most suitable and efficient for this study. The models are constructed with the ISIS-TUFLOW software which is industry standard for this type of modelling and offers a wide range of modelling outputs. This software was chosen to achieve a high quality hydraulic model capable of outputting various deliverables to meet the study requirements.

6.3 Topographic Datasets

6.3.1 Survey data

A survey conducted by Atlantic Geomatics Ltd in 2005 for the Scottish Flood Defence Asset Database (SFDAD) project provided the majority of information for the model build. As part of this study, JBA Consulting carried out additional survey of river cross sections and structures on the Kirkgunzeon Lane in Dalbeattie on 14 July 2015 and a further survey for the Kirkgunzeon Lane in Kirkgunzeon. This data forms the basis of the 1D hydraulic models in ISIS where available.

Further cross section data for Edingham Burn was taken from survey data from a flood risk assessment (FRA) for Barhill Road undertaken by JBA in 2012. The existing HEC-RAS model was used for information where structure data remained incomplete. The survey conducted in Kirkgunzeon did not cover the whole of the modelled reach. The section between approximately Drumjohn Bridge and Kirkgunzeon Parish Church has no recent surveyed cross section information. This includes a weir at the confluence of Drumjohn Burn and Kirkgunzeon Lane. Bridge structures included in the models are shown in Table 6-1 to Table 6-3 below.

Table 6-1: Bridges on the Kirkgunzeon Lane in Dalbeattie

2015s2898 - Dalbeattie Flood Study - Final Report v2.0.docx

Structure	Photograph	Details
High Street road bridge		Upstream face of bridge from right bank OS NGR: NX 83330 61320 FPS Operation: 10 Model Node: DALB01_1762
Maxwell Street footbridge		Upstream of bridge from right bank OS NGR: NX 83256 61246 Model Node: DALB01_1633
Footbridge at Church Crescent and Urr Road		Looking to right bank from left OS NGR: NX 83168 61084 FPS Operation: N/A Model Node: DALB01_1400
Footbridge at David Road and Birch Grove		Upstream face from left bank OS NGR: NX 83218 60898 FPS Operation: N/A Model Node: DALB01_1059
Newport Bridge road bridge (A710)		Upstream face from right bank OS NGR: NX 83152 60554 Model Node: DALB01_0493

JBA consulting

Structure	Photograph	Details
Road bridge near Biggar's Mill Business Park		Upstream face from left bank OS NGR: NX 83052 60499 Model Node: DALB01_0093

Table 6-2: Bridges on the Edingham Burn, Dalbeattie

Structure	Photograph	Location
Barhill Road culvert		Upstream face OS NGR: NX 83566 61771 FPS Operation: N/A Model Node: EDIN01_0103
Footbridge at confluence with Kirkgunzeon Lane, near Munches Park House		Upstream face OS NGR: NX 83549 61684 FPS Operation: N/A Model Node: EDIN01_0007

Table 6-3: Bridges on Kirkgunzeon Lane and Drumjohn Burn in Kirkgunzeon

Structure	Photograph	Location
Drumjohn Burn		
Toll Bar Bridge, A711 road bridge		Upstream face OS NGR: NX 87775 67201 Model Node: KIRK02_0702

JBA consulting

Structure Photograph Location Downstream face Drumjohn Bridge, OS NGR: NX 87325 67045 farm access bridge Model Node: KIRK02_0133 Kirkgunzeon Lane Looking upstream from right bank Kirkgunzeon Village Bridge OS NGR: NX 86706 66759 Model Node: KIRK01_0879 Upstream face. Metal footbridge upstream of Corra OS NGR: NX 86628 66521 Castle Model Node: KIRK01_0553 Looking downstream from right bank. Corra Bridge, A711 road bridge OS NGR: NX 86723 66132 Model Node: KIRK01_0109 Looking downstream from A711 Corra Bridge. Old road bridge at Corra Bridge OS NGR: NX 86741 66117 Model Node: KIRK01_0092
JBA Consulting carried out a top of bank survey, to find the crest level of all embankments within the study reach, on both the Dalbeattie Burn and Kirkgunzeon Lane. Building threshold elevation data was also collected in order to carry out a damage assessment.

6.3.2 Other data

Filtered DTM data has been used to create the model grid. A 1m resolution LiDAR DTM dataset was provided by the Dumfries and Galloway Council.

Ordnance Survey MasterMap data has been used to define land use categories for applying Manning's n roughness values to the 2D domain.

6.4 Model Setup

This section gives details of the coverage of the two models developed for this study, and outlines the components of the 1D and 2D domains.

6.4.1 Linking

A uniform approach was used to link the 1D model to the 2D domain. TUFLOW 'HX' links were used to create a dynamic link based on modelled water levels. Elevations are enforced along these links, using Z lines to ensure that the model grid represents the bank levels in the 1D-2D interface cell. The Z lines use top of bank survey where available. Outside the surveyed area, levels are interpolated between ISIS cross sections.

6.4.2 Extents

Dalbeattie model

The Dalbeattie model consists of a 1D reach on the Dalbeattie Burn and one on part of the Edingham Burn through Dalbeattie, plus a single 2D domain which covers the floodplain in the study area (Figure 6-1). On the Kirkgunzeon Lane/Dalbeattie Burn watercourse, the model extends from the B793 upstream of Dalbeattie, NGR 284725 561533, through the built-up area of Dalbeattie to the confluence with the Urr Water, downstream of the A710 near Biggar's Mill Business Park, NGR 283022 560382. The Edingham Burn is included from the dismantled railway near Nursery Cottage/Rounall Avenue, NGR 283551 562172, to the confluence with the Dalbeattie Burn downstream of Barhill Road near Munches Park House, NGR 283550 561685. The 2D domain covers both banks of the modelled watercourses for the entire modelled reach, including the area behind the flood defences. It has a grid of cell size 4m, and has its origin at NGR 282982 560256. Base elevation data in the 2D model grid are interpolated from the LIDAR DTM, which has a resolution of 1m². An artificial wall has been put in place on the northern edge of the domain close to Bar Hill to prevent water exiting the 2D domain in this location (see model assumptions section for more details).

Figure 6-1: Dalbeattie model schematic

Kirkgunzeon model

The Kirkgunzeon model also consists of a single 1D reach of the channel, embedded in a single 2D domain which covers the floodplain through the modelled reach. The extent of this model is shown in Figure 6-2. The modelled reach extends from just upstream of the A711 at Toll Bar Bridge, NGR 287774 567203, to just downstream of Corra Bridge, NGR 286741 566129. The upstream 1.41km of the modelled reach is Drumjohn Burn. NGR 287062 567649 marks the confluence of Drumjohn Burn and Kirkgunzeon Lane. Downstream of this point the modelled watercourse is the Kirkgunzeon Lane. The 2D domain is comprised of a grid of 4m cell size covering both banks of the watercourse along the modelled reach. A culvert alongside the A711 in the vicinity of Mossband Caravan Park, is also included in a TUFLOW 1D component, to allow representation of any interactions of floodwater with this culvert (see Figure 6-2). Base elevation data in the 2D model grid are interpolated from the LIDAR DTM, which has a resolution of 1m².

Figure 6-2: Kirkgunzeon model schematic

6.4.3 Boundaries

Upstream boundaries to the model consist of inflows into the 1D domain at the upstream end of the modelled watercourses. The 2D model upstream boundaries on each watercourse are located at a natural break in the topography as much as possible. In the Kirkgunzeon model the 2D upstream boundary has been located a short distance upstream of surveyed cross section data so as not to influence floodplain flow patterns in the vicinity of Toll Bar Bridge, A711. Downstream boundaries are Normal Depth boundaries at the downstream limit in the 1D and 2D domains. The boundaries and related hydrology applied to each model are discussed here. Tidal boundaries have been modelled separately as a sensitivity test.

1D domain

The inflows to the ISIS models are flow-time (QT) boundaries at the upstream limit of each modelled watercourse. The design hydrograph from ReFH2 is applied through these boundaries, adjusted to the FEH statistical peak. In the Dalbeattie model there are inflows to the upstream of Edingham Burn and the Kirkgunzeon Lane/Dalbeattie Burn. In the Kirkgunzeon model there is an inflow at the upstream end of the Drumjohn Burn. This has a minimum flow set to improve model stability. Another inflow accounts for the Kirkgunzeon Lane flow at the confluence with the Drumjohn Burn. This inflow is however applied further downstream than the confluence, this is due to the presence of interpolated sections.

At the 1D downstream limits of the study watercourses, the models calculate water depth using the flow input and river bed slope. In hydraulic modelling this type of boundary is known as a Normal Depth boundary. The Edingham Burn watercourse links directly to the Dalbeattie Burn.

2D domain

At the downstream end of the 2D domains, head-flow (HQ) boundaries have been applied across the floodplain. These are normal depth boundaries based on slope of the floodplain. There is one of these boundaries on both the left and right banks at the downstream limit of each model.

6.4.4 Roughness

Channel (1D domain)

In the 1D model of the Dalbeattie Burn through Dalbeattie, both the channel and the overbank areas have been split into three categories of roughness. Observations on site, such as presence of water crowfoot and steep reaches over bedrock, were used to inform the location of different categories. Manning's n values corresponding to these categories are shown in Table 6-4 below.

Category	Manning's n	Model nodes applied to
Channel		
General	0.040	DALB01_3895-2026 DALB01_1848-1750 DALB01_1615-1400
Steep	0.050	DALB01_1948-1898 DALB01_1684-1633
Slack	0.038	DALB01_1400-0000
Overbank areas		
Grass	0.051	DALB01_3895-3391 Left Bank DALB01_2336-1898 DALB01_1549-0000
Trees	0.077	DALB01_3305-2352
Paved	0.055	Right Bank DALB01_3232-3090 DALB01_1799-1582 Right Bank DALB01_2336-1948

Table 6-4: Dalbeattie Burn model roughness values

River cross section profile varies along the Dalbeattie Burn depending on location. In the upper half of the model the floodplain is more rural, with open land in the most upstream section then Colliston Park at the more upstream end of Dalbeattie. The watercourse then passes through a section which is heavily urbanised on both banks through the centre of Dalbeattie, before passing into an area with some green space on the banks downstream towards the downstream modelled limit.

Roughness values in the 1D Kirkgunzeon model are uniform along the whole modelled reach. A Manning's 'n' value of 0.040 is applied in the channel, and 0.049 is applied for the overbank portions. The majority of the modelled reach is rural, with just a short section more urban through the village of Kirkgunzeon.

Floodplain (2D domain)

Floodplain areas were divided into polygons of similar landuse and surface, based on the Ordnance Survey MasterMap dataset. Manning's 'n' roughness values were then assigned to each land use category and applied to the 2D model domain. The values used are presented in the following table, along with a description and the TUFLOW material code which was used to apply each value.

Material Code Manning's n Description 1 0.500 Buildings 2 0.070 Trees 3 0.060 Rough grass General surfaces/Natural surfaces 4 0.040 5 0.030 Inland Water 0.025 6 Manmade surfaces, roads, manmade paths

Table 6-5: Manning's n roughness values used for 2D modelling

6.4.5 2D domain features

Buildings

Buildings are modelled in the active domain of the model, using a high roughness level rather than excluding from the modelled domain. Building footprints were taken from OS Mastermap. All buildings have a Manning's n roughness value of 0.5 applied to the grid cells within their footprint.

Ground Modifications

Several modifications to the base ground model grid have been applied in both the Dalbeattie Burn and Kirkgunzeon Lane models.

- The bank elevations have been reinforced in the 2D model domain. TUFLOW Z lines have been used to apply the defence crest elevation values from the bank top survey. This is a more direct method than interpolating grid values from the DTM and is therefore more accurate.
- In some places patches have been used to raise bridge deck elevations where the LIDAR filtering has removed these. This has been done using the TUFLOW zsh polygons where bridge decks are included in the 2D domain.
- Some zsh polygons have also been applied in places to smooth irregularities in the ground model where anomalies exist (thought to be due to LIDAR filtering).

In the Dalbeattie Burn model, an artificial wall has been stamped onto the ground model grid between two high points in the area of Bar Hill on the right bank floodplain. This was done to block a possible flow path into the neighbouring Edingham Burn valley. Survey data is not available for the whole watercourse in this valley and this area is beyond the scope of this study, so the decision was made to eliminate this flow path. Should this area be of interest for further studies the possible interactions between the two valleys should be considered.

6.5 Model calibration and validation

There are several ways in which a hydraulic model can be calibrated. The most reliable method is using flow and or level data from within the study catchment. An alternative is to validate predicted model flood extents with historic flooding events, which can be particularly effective if an estimate of return period can be achieved. However, there are no flow or level gauging stations on the study watercourse, and there have been no flooding events on the watercourse since the flood protection scheme (FPS) was installed. It is therefore very difficult to calibrate model results. Sensibility checks have been carried out, to validate predicted model flood extents and flood mechanisms on the ground.

Test simulations were run to assess the impact on model extents of BFI values used in the hydrological estimates. Knowledge of the catchment suggests that the hydrological estimates with BFI unadjusted provide a more realistic pattern of flooding in this catchment.

6.6 Assumptions and uncertainties

The nature of hydraulic modelling means that assumptions are generally made about parameters and components of the models, as not all details can always be accommodated or incorporated. This is a standard approach widely accepted across the industry. In general the modelling assumes that

JB/

- values of parameters set in the models are representative of conditions on the ground (e.g. roughness, inflows)
- 1D cross sections provide a reasonable representation of the channel geometry
- the LIDAR DTM accurately reflects the floodplain terrain

In addition to these general assumptions, further specific assumptions have been applied to the modelling for this study.

Survey data was not available for a large section of the Kirkgunzeon Lane upstream of Kirkgunzeon village or for a weir at the Kirkgunzeon Lane-Drumjohn Burn confluence. Data was incomplete for a weir in Dalbeattie near Maidenholm Forge Mill and a weir downstream of Kirkgunzeon village bridge. Interpolated cross sections have been used to represent the missing section of the channel near Kirkgunzeon, which assumes the cross sections upstream and downstream are representative of this missing reach. The weir upstream of Kirkgunzeon village have been estimated from site observations. These modelling decisions may affect the reliability of modelled water levels locally.

Mill lades within the study reaches have not been modelled directly.

Base ground levels have been modified in some small areas to smooth out anomalies found within the grid, thought to be due to the filtering of the LIDAR data. This also applies at some bridge decks which are modelled in the 2D domain.

The external wall of a demolished building in Dalbeattie has been included in the defences layer. This assumes the wall is in good condition and would act as a defence.

During model development it was found that it may be possible for some flow to pass from the right bank floodplain of the Dalbeattie Burn near Bar Hill into the neighbouring valley containing Edingham Burn. Survey data is not available for a large proportion of the watercourses in that valley, and this area is beyond the scope of the current study. The possible flow route in this area has therefore been artificially blocked for the purposes of the modelling for this study. Should the Bar Hill area be of interest, flow interactions between the two valleys should be investigated. This is discussed further in Section 7.2.1.

The inflow representing the Kirkgunzeon Lane watercourse to the confluence with the Drumjohn Burn has been applied to the model further downstream than the confluence location. This was due to the use of interpolated cross sections in the unsurveyed reach. This may mean that flows in the area between the confluence and Kirkgunzeon Parish Church are underestimated, however flows through Kirkgunzeon village will be as estimated for this location. As this area is rural with small numbers of properties the impact is likely to be small.

The upstream limit of the Kirkgunzeon Lane watercourse near Toll Bar Bridge (A711) has been extended further upstream than available survey data to remove the impact of the upstream boundary proximity on floodplain flooding patterns here. This applies to a short distance of the model in an area of few properties.

It should be noted that the modelled watercourse upstream of the Kirkgunzeon Lane and Drumjohn Burn confluence is Drumjohn Burn. Model node labels here begin KIRK. The Kirkgunzeon Lane watercourse has not been modelled in the 1D domain upstream of this confluence as survey data was not available here. Further survey of this reach would allow inclusion in the model 1D domain and would improve confidence in floodplain flooding patterns in this area. As there are few properties here this approach was deemed suitable for this study.

Recommendations

Recording of river levels and rainfall within the catchment would help to reduce uncertainty in hydrological estimates used, and aid model calibration which would improve confidence in predicted modelled water levels. Without this recorded data the standard of protection analysis is reliant on the estimated return periods from the hydrological analysis.

Acquisition of further survey data for river cross sections and structures on the study watercourses in some areas would improve the model representation of the study reaches and reduce uncertainty in predicted water levels in various locations. Most notably on the Kirkgunzeon Lane between Drumjohn Bridge farm access bridge and Kirkgunzeon village Parish Church.

The models developed here are deemed appropriate to fulfil the aims of this study with the data available. They could be improved if further data should become available in the future. The representation of the model structures and 2D domain are valid up to the 1000-year flow.

6.7 Modelled Scenarios

6.7.1 Design Runs

The design runs form the baseline modelling for this study, representing the current situation assuming defences are in place. This model scenario was run for a range of return periods from 2-year to 1000-year design events, including an allowance for climate change on the 200-year return period event. These simulations were carried out for both the Dalbeattie and Kirkgunzeon models.

6.7.2 Freeboard

Both models have been run in a 'No Freeboard' scenario. This represents the defences along the study reach without an allowance for freeboard. Surveyed defence crest levels have been lowered by 0.30m everywhere. This scenario has been run for the full range of return periods as in the design runs.

6.7.3 Blockage

A blockage scenario has been run for both models, the Dalbeattie Burn in Dalbeattie and the Kirkgunzeon Lane in Kirkgunzeon. This represents a 20% reduction in area at all of the bridge structures along the modelled reach simultaneously. Blockage has been simulated by reducing the soffit level of the bridges. This scenario was run for the 200-year return period event and the 200-year plus an allowance for climate change.

6.7.4 Tidal downstream boundary

This model scenario applies to the Dalbeattie Burn model, Dalbeattie only. The downstream boundaries in both the 1D and 2D domains were changed from normal depth boundaries to constant level boundaries. These level boundaries apply the extreme sea level estimate for the 200-year return period at the study area (T200), which is 6.4272mAOD. This was run for the 200-year return period event only.

7 Model results

7.1 Introduction

Flood mapping has been undertaken and is based on the 1D-2D modelling using the unadjusted BFI hydrological estimates. Model results are provided in a number of formats:

- The flood levels in mAOD at each cross section for each return period are contained in Appendix E.
- The model results have been displayed graphically as flood maps in Appendix D.

Discussion on the performance of the flood defences is provided in Section 5.

7.1.1 Discussion on BFI

A separate flood modelling was undertaken using hydrological estimates based on the unadjusted BFI values (utilising values in the BFI map of Scotland) as a separate test on the 200 year return period. This is discussed further in the Sections below.

7.2 Flood map results

Flood maps were produced by combining the 1D and 2D results. The 2D maximum flood depths were produced in TUFLOW however as the channel and adjacent banks were modelled as 1D the results do not show any water in the watercourse channel. The 200 year flood map is provided for Dalbeattie in Figure 7-1 below and for Kirkgunzeon in Figure 7-2 (also provided as an A3 plan in the Figures section of the report). These maps have also been created as 0.25m flood depth contours.

Figure 7-1: Flood depth map for the 200 year (0.5%) modelled flood event in Dalbeattie

Figure 7-2: Flood depth map for the 200 year (0.5%) modelled flood event in Kirkgunzeon

7.2.1 Risk of flow route from Maidenholm reach to Edingham Burn

During the modelling of the Dalbeattie reach, a potential flow path was discovered from behind the Maidenholm embankment (right bank) around the east and north side of Bar Hill before joining the Edingham Burn. The modelling undertaken suggests that this could be a flood route once the Maidenholm embankment overtops and the floodplain fills to the point at which the flow path could initiate. The flow path is shown in Figure 7-3 below.

Whilst this flow route has not been modelled, it is estimated from the modelling undertaken that it could start at the 200 year flood (the 100 year flood is predicted to partially fill the Maidenholm floodplain but not to a level where the flow path can start). Based on the LiDAR information, it is estimated that levels in the floodplain would need to rise to a level of approximately 40mAOD before the flow path can initiate.

This flow path would be constrained by a number of barriers including the:

- 1. The old railway embankment. This has been modelled (see Appendix C) and has a capacity of 3.6m³/s. It is also currently 50% blocked by sediment.
- 2. The A711 road embankment. The condition and type of culvert through this embankment is unknown.
- 3. Natural floodplain attenuation.

This has some important implications for the appraisal of options on the Dalbeattie and Edingham Burns:

- 1. At extreme floods (200 year flood or greater) there may be some loss of flow in the reach from Maidenholm to the confluence with the Edingham Burn. This is currently not taken into consideration in the existing model and is therefore conservative.
- 2. At extreme floods (200 year flood or greater) there is a risk that the Edingham Burn flows could increase as a result of the flow path around the north of Bar Hill. This increase in flows would be constrained by differences in the timing of the peak flow, natural floodplain attenuation and potential attenuation behind old railway and road embankments, but is a risk that would need to be considered as part of any detailed appraisal.

It is unclear why the Maidenholm embankment was added as part of the Dalbeattie FPS, other than perhaps to provide some additional protection to agricultural land. It is now clear that this may have been predicted as part of the original design work.

7.3 Tidal risk

The impact of coastal flood risk to the lower reaches of Dalbeattie has been assess by running the model with a constant extreme tidal still water level as the downstream boundary. The model has been run with the 200 year river flow and a conservative 200 year tidal flow as well. Whilst this combination is unrealistic due to the probability of a 200 year flow and tide occurring at the same time, it is a useful check for the purposes of this assessment and to inform the decision making process.

The difference between the purely 200 year and the combined event is shown in Figure 7-4 (also provided as an A3 plan in the Figures section of the report). Whilst the impact of high tidal levels at the downstream reach extents as far upstream as Maxwell Street/Beech Grove, the impact on flood levels and flood extents is relatively minor. The impact is most noticeable in the reach downstream of the road bridge near Biggar's Mill Business Park and in the business park itself.

Figure 7-4: Tidal flood risk

7.4 Freeboard modelling

The modelling undertaken has been repeated with the flood defences lowered by 300mm (flood defences are mainly walls through the main reach through Dalbeattie). This is to adjust the defence crest levels to the original design levels and to consider uncertainties in the original design.

Flood risk in Dalbeattie is increased at the 200 year flood suggesting that there is minimal (less than 300mm) freeboard from the modelled water levels to the flood defence elevations for some assets. This is most noticeable for the embankment in Colliston Park (Asset 7) and at the embankment surrounding the bowling green (Asset 17) (see Figure 7-5)

Flood risk with the freeboard adjustment in Kirkgunzeon and Drumjohn is not affected suggesting that there is a suitable freeboard for these embankments.

Figure 7-5: Comparison of modelled flood extent with and without 300mm freeboard adjustment

Figure 7-6: Comparison of modelled flood extent with and without 300mm freeboard adjustment

Figure 7-7: Comparison of modelled flood extent with and without 300mm freeboard adjustment

7.5 Bridge capacity review

Hydraulic structures are important considerations in flood modelling as their presence generally constricts the cross section of the watercourse. They are often liable to blockage by large debris carried by the flood flows and hence are often the point where the watercourse exits the channel.

The structures in this reach generally have a good standard of protection, able to convey the 200 year flow without water levels surcharging the bridge soffits (as shown in Table 7-1).

Bridge	Watercourse	Lowest soffit level (mAOD)	Return period at which soffit is reached
B793	Kirkgunzeon Lane	41.90	>1000
Bar Bridge	Kirkgunzeon Lane	25.45	>1000
Upstream Colliston park footbridge	Kirkgunzeon Lane	15.87	>1000
Mid Colliston Park footridge	Kirkgunzeon Lane	15.24	>1000
Downstream Colliston Park footridge	Kirkgunzeon Lane	13.15	>1000
Water street footbridge	Kirkgunzeon Lane	12.69	>1000
High street road bridge	Kirkgunzeon Lane	11.37	>1000
Maxwell Street footbridge	Kirkgunzeon Lane	10.34	>1000
Footbridge	Kirkgunzeon Lane	7.62	200
Footbridge	Kirkgunzeon Lane	7.46	>1000
A710 Port Road	Kirkgunzeon Lane	7.07	>1000

Table 7-1: Bridge capacity

Biggers Mill Business Park Arch Bridge	Kirkgunzeon Lane	6.80	>1000
Barhill Road Culvert	Edingham Burn	16.44	<2
A711 Drumjohn Bridge	Drumjohn Burn	69.29	>1000
Drumjohn farm access bridge	Kirkgunzeon Lane	67.04	10
Kirkgunzeon village Bridge	Kirkgunzeon Lane	57.94	>1000
A711 Kirkgunzeon Lane bridge and old road bridge	Kirkgunzeon Lane	53.86	>1000
Old stone arch bridge	Kirkgunzeon Lane	55.03	>1000

7.5.1 Bridge blockage analysis

As blockage of bridges during floods can significantly reduce the opening area of the structures and increase the afflux across the bridge, a test in the modelling was undertaken to block the structures. As all structures in the reach are single span open structures, the probability of blockage is limited, however this is still a risk of a tree, for example, blocking on the upstream face of the bridges.

As such, the soffit of each bridge was lowered to reduce the opening area of the bridge by 20%. The results in terms of the modelled flood extent did not vary during blockage runs due to the already high bridge capacity along the modelled watercourses. There is very little difference between the baseline and blockage runs at the 200 year flood. With the inclusion of climate change a small change in flood outline is observed in Dalbeattie as shown in Figure 7-8.

7.5.2 Flood mapping deliverables

The following flood maps listed and described in Table 7-2 have been produced and are contained in Appendix F. These have been supplied digitally to Dumfries and Galloway Council in MapInfo and AutoCAD format.

Table 7-2: Summary of model results

Name	Description
Dalbeattie runs:	
2 Year Event.pdf	Dalbeattie - 2 year flow on the Kirkgunzeon Lane and Edingham Burn
10 Year Event.pdf	Dalbeattie - 10 year flow on the Kirkgunzeon Lane and Edingham Burn
25 Year Event.pdf	Dalbeattie - 25 year flow on the Kirkgunzeon Lane and Edingham Burn
50 Year Event.pdf	Dalbeattie - 50 year flow on the Kirkgunzeon Lane and Edingham Burn
100 Year Event.pdf	Kirkgunzeon - 100 year flow on the Kirkgunzeon Lane and Edingham Burn
200 Year Event.pdf	Kirkgunzeon - 200 year flow on the Kirkgunzeon Lane and Edingham Burn
1000 Year Event.pdf	Kirkgunzeon - 1000 year flow on the Kirkgunzeon Lane and Edingham Burn
200 Year +CC.pdf	Kirkgunzeon - 200 year flow with an allowance for climate change on the Kirkgunzeon Lane and Edingham Burn
200 Year +CC Adjusted.pdf	Kirkgunzeon - 200 year flow with an allowance for climate change and including Base Flow Index on the Kirkgunzeon Lane and Edingham Burn
Kirkgunzeon runs:	
2 Year Event.pdf	Kirkgunzeon - 2 year flow on the Kirkgunzeon Lane and Drumjohn Burn
10 Year Event.pdf	Kirkgunzeon - 10 year flow on the Kirkgunzeon Lane and Drumjohn Burn
25 Year Event.pdf	Kirkgunzeon - 25 year flow on the Kirkgunzeon Lane and Drumjohn Burn
50 Year Event.pdf	Kirkgunzeon - 50 year flow on the Kirkgunzeon Lane and Drumjohn Burn
100 Year Event.pdf	Kirkgunzeon - 100 year flow on the Kirkgunzeon Lane and Drumjohn Burn
200 Year Event.pdf	Kirkgunzeon - 200 year flow on the Kirkgunzeon Lane and Drumjohn Burn
1000 Year Event.pdf	Kirkgunzeon - 1000 year flow on the Kirkgunzeon Lane and Drumjohn Burn
200 Year +CC.pdf	Kirkgunzeon - 200 year flow with an allowance for climate change on the Kirkgunzeon Lane and Drumjohn Burn
200 Year +CC Adjusted.pdf	Kirkgunzeon - 200 year flow with an allowance for climate change and including Base Flow Index on the Kirkgunzeon Lane and Drumjohn Burn
Options runs:	
Freeboard modelling	The above flows were replicated with lowered defences to allow for 300mm freeboard
Blockage modelling	Blockages were modelled in Kirkgunzeon and Dalbeattie for the 200 year and 200 year with an allowance for climate change flows.

7.6 Properties at risk

All properties potentially at risk were identified and threshold surveys were undertaken to determine the flood risk to each property. Modelled flood levels were compared against these property threshold levels to determine the number of properties at risk from flooding from the relevant watercourses. The properties where threshold level surveys were undertaken are shown on Figure 7-9 and Figure 7-10.

Figure 7-9: Surveyed threshold levels in Dalbeattie

Figure 7-10: Surveyed threshold levels in Kirkgunzeon

7.6.1 Properties at risk from the Kirkgunzeon Lane in Dalbeattie

A summary of the properties flooded is provided in Table 7-3, and a plan of the standard of protection for each property is shown in Figures 7-11 to 7-13 (also provided as an A3 plan in the Figures section of the report). A full database of properties at risk and the modelled depth of flooding is provided in Appendix F.

	2	10	25	50	100	200	200cc	1000
Properties flooded above TL	0	2	2	2	2	4	28	41
Properties flooded (includes below floor level to -0.3m)	0	3	3	3	9	16	51	88
Average flood depth (above threshold)	0	0.07	0.15	0.19	0.15	0.32	0.20	0.26
Maximum flood depth (above threshold)	0	0.10	0.19	0.24	0.27	0.64	0.71	0.75

Table 7-3: Summary of properties at risk from the Dalbeattie Burn

Analysis of properties flooded in the table above are given for those above the property threshold and those below the threshold (in the solum between ground and floor level). Not all property types will flood below the floor level (as this depends on construction type and age), but it is useful to include as it will still cause flood damages (drying and clean-up costs). Furthermore, the use of PLP measures can minimise these type of flooding relatively easily.

Figure 7-11: Properties at risk and standard of protection

Note. A 100 year SOP suggests that the properties would not flood at the 100 year flood, but would be at risk from a 200 year flood.

Figure 7-12: Properties at risk and standard of protection, at a larger scale

7.6.2 Properties at risk from the Kirkgunzeon Lane and Drumjohn Burn (upstream reach)

Whilst modelled flood waters reach the outer extents of a number of properties in this study area the flood waters do not reach sufficient elevation to exceed threshold levels (including below floor level -0.3m) in any properties in the model domain. This suggests that all properties in the Kirkgunzeon study area have a 1000 year standard of protection. Overall the risk is extremely low.

Figure 7-13: Properties at risk and standard of protection in Kirkgunzeon

7.7 Effectiveness of FPS

The defence elevations have been compared against the modelled water levels to determine the current standard of protection for those defences along the three main watercourses. This analysis is shown in Figures 7-14 to 7-22.

Contains Ordnance Survey data C Crown copyright and database 2015

The analysis compares flood levels against the defence levels. For comparison, the defence levels are shown assuming a reduction in levels by 300mm to take into account freeboard. This is provided for information and to gauge the relative uncertainty in the standard of protection.

7.7.1 Upstream Kirkgunzeon Lane in Dalbeattie

The analysis of the modelled water levels against the surveyed defence crest levels suggests that the right bank flood defences have a good standard of protection in the region of a 100 year event, with allowance for a full 300mm freeboard.

The left bank has a consistently good standard of protection, in the region of the 200 year flood event with an allowance for climate change. The embankment consisting FPS Operation 7, which extends across the base of Colliston Park, perpendicular to the main channel, is likely to be the main concern in this reach whilst it does maintain a standard of protection for the 200 year flood event without freeboard allowance or the 10 year event if a 300mm freeboard is allowed for.

Figure 7-14: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, upstream of High Street Bridge - Right bank

Figure 7-16: Defence height vs. water surface elevation at FPS Operation 7 on the Kirkgunzeon Lane in Dalbeattie, downstream of pond in Colliston Park - Perpendicular to Left bank

7.7.2 Downstream Kirkgunzeon Lane in Dalbeattie

The modelled flood waters up to the 200 year event with an allowance for climate change are maintained in bank for the majority of the reach downstream of the High Street Bridge in Dalbeattie for both right and left banks. The standard of protection is lower, in the region of the 100 year flood, for the section of the reach on the right bank which is immediately downstream of the FPS Op. 17 embankment. The flood mapping results attained during this study suggest modest amounts of flooding from overtopping in this area even given the 200 year flood with allowance for climate change.

Figure 7-17: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, downstream of High Street Bridge - Right bank

Figure 7-18: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Dalbeattie, downstream of High Street Bridge - Left bank

7.7.3 Edingham Burn

Comparing the modelled water levels against the surveyed defence crest levels suggests that the right bank flood defences on the Edingham Burn have a good standard of protection in the region of the 200 year flood with allowance for climate change and adjusted using the Base Flow Index. This standard of protection does not include a full 300mm freeboard which, if allowed for, reduces the standard of protection to a flood event with a recurrence of approximately 25 years.

Figure 7-19: Defence height vs. water surface elevation on the Edingham Burn in Dalbeattie - Right bank

Figure 7-20: Defence height vs. water surface elevation on the Edingham Burn in Dalbeattie - Left bank

The results for the left bank suggest a poorer standard of protection from a modelled 10 year event at the lowest and a 200 year event at the greatest. The flood mapping shows flood water overtopping the banks in this region but not causing significant property flooding compared to the upper Edingham Burn reach which was not surveyed.

In the model runs the lower Edingham Burn left bank shows water levels below threshold around properties adjacent to the Burn. Given additional protection to the upper Edingham Burn right bank, threshold levels could be approached with increased water levels forced by water remaining in bank.

7.7.4 Maidenholm

Analysis of the modelled water levels along the Maidenholm reach of the Kirkgunzeon Lane suggests that surveyed crests have a general standard of protection in the region of the modelled 200 year flood with an allowance for climate change.

A short section of the reach proximate to Duncan's Pool (a widening of the channel) brings the overall standard of protection down to approximately 50 years (without a full 300mm freeboard allowance). This is in agreement with the flood mapping carried out which shows the 100 year flood overtopping FPS Op. 27 embankment in this location and causing agricultural land to flood.

7.7.5 Kirkgunzeon

The surveyed defence crest levels for the right bank in Kirkgunzeon suggest a standard of protection of below 2 years in places, particularly upstream of the disused Mill lade. This is to be expected as this is not part of the flood defences and is a natural flood bank.

The section downstream of the Mill lade, protected by asset 29 has a higher standard of protection in the region of the 200 year flood with an allowance for climate change and inclusion of the Base Flow Index but the standard of protection decreases dramatically downstream, close to the A711 bridge. This is only likely to make agricultural land at risk of inundation. No crest levels were surveyed for the left bank in Kirkgunzeon as there are no flood defences.

Figure 7-22: Defence height vs. water surface elevation on the Kirkgunzeon Lane in Kirkgunzeon - Right bank

7.7.6 Drumjohn Burn

The defended reach at Drumjohn protected by asset 33 has a very good standard of protection in the region of the 200 year flood with an allowance for climate change.

Figure 7-23: Defence height vs. water surface elevation on the Drumjohn Burn northeast of Kirkgunzeon - Left bank

JBA

7.8 Summary of flood risk

The flood risk to Dalbeattie and Kirkgunzeon can be summarised as follows:

- The flood defences have a good standard of protection and in many areas are providing a 200 year standard of protection. Uncertainty in the hydrology for this ungauged catchment should be noted in reference to this standard of protection.
- The majority of flood risk relates to the Edingham Burn. This area was not included as part of the FPS and is at risk from floods in excess of the 5 year flood (i.e. at risk at the 10 year flood).
- Many properties in this Edingham Burn area are have floor levels that are raised above ground levels reducing the impact of the flooding to properties.
- There is no direct overland flow path back to the Kirkgunzeon Lane for flows that are out of bank on the Edingham Burn (due to the flood defence embankments along the Kirkgunzeon Lane). This increases the flood depths locally along John Street.
- Freeboard on many flood defences is suitable. However for some assets at Colliston Park (Asset 7) and at the bowling green (Asset 17) the level of freeboard is insufficient at the 200 year standard of protection. Asset 7 is also in poor condition and would benefit from being raised and improved.
- The impact of climate change exposes the same structures as above to flood risk.
- The modelling has identified a potential flow path from the Maidenholm reach to the north and around Bar Hill and into the Edingham Burn catchment. This is a risk that would only occur at the 200 year flood flow, but should be investigated further.
- Flood risk in the Kirkgunzeon reach is minimal with the embankments present in good condition and with a good standard of protection. Kirkhouse farm buildings in Kirkgunzeon would ideally be protected, as would Corra farm but the type of buildings at risk may well not necessitate immediate action relative to the care home and hotel in Dalbeattie.

8 Urban and surface water flood risk

SEPA's Flood Risk Management Maps show limited surface water flood risks in Dalbeattie. This surface water mapping was carried out using SEPA's national surface water mapping that has not been carried out to the same methodology or detail as the regional mapping undertaken by JBA Consulting. As a result surface water mapping has been re-assessed for this study using the available DTM and the SEPA regional mapping methodology.

SEPA's surface water flood maps were developed by JBA Consulting using JFlow, JBA's in-house 2D modelling software package. JBA has undertaken the same methodology to assess the surface water flood risk to Dalbeattie to help inform flood risk and risk under defended scenarios.

8.1.1 Methodology

JFlow for surface water mapping works on the basis of applying a rainfall event across the entire study area. The chosen rainfall event was the 200 year, 3 hour storm duration. The rainfall event was calculated based on the FEH CD v3 using a point located in Dalbeattie to give appropriate catchment descriptors and rainfall rate. To be conservative the summer profile was chosen as this has a shorter time to peak and is applicable to the urban area of Dalbeattie.

The model was run on a 1m resolution to match the available DTM data. Maximum flood depth and velocities were derived automatically from the 2D modelling. As this type of surface water modelling applies rainfall to every cell, the flood depths derived from the 2D modelling are clipped at a predefined depth (otherwise all cells would be shown as being flooded). The depth typically used is 0.05m.

The mapping is useful to review the flow paths and ponding areas, however it will not necessarily correctly identify all flow paths as the resolution will not pick up key features such as walls, buildings, surface water drainage and kerbs.

8.1.2 Results

The surface water flood map results are shown in Figure 8-1 (also provided as an A3 plan in the Figures section of the report). The results suggest that there is localised ponding in Dalbeattie to depths that could cause a flood risk to properties located close to the Kirkgunzeon Lane.

Figure 8-1: 200 year surface water flood risk for Dalbeattie including the CCTV surveyed culverts

The areas of the model which show greatest surface water flood depths do not closely match with those where pluvial flood events have been recorded, suggesting further detail may be required in the model to determine flow paths controlled by topography on a smaller scale than provided by the LiDAR data used.

The location of culverts correspond to the location of low points and ponding shown in Figure 8-1. In addition, there are a number of flow paths within the town itself and outside the fluvial flood outlines that could cause additional flood risk to the town.

This information is provided to inform future maintenance and operational purposes. No flood mitigation options are considered to deal with the surface water flood risks as part of this report, although the recommendations made in Section 3.2 should be considered.

9 Options for flood mitigation

9.1 Relevant legislation

Local Authorities are responsible for flood management under the Flood Risk Management (Scotland) Act 2009. Under this legislation, Local Authorities have discretionary powers to undertake activities to mitigate against flooding.

9.1.1 Relevant Guidance

Guidance for flood risk management in Scotland is provided within the following documents:

- Flood Risk Management (Scotland) Act 2009: Sustainable Flood Risk Management Principles of Appraisal: A Policy Statement
- Flood Risk Management (Scotland) Act 2009: Delivering Sustainable Flood Risk Management

Specific guidance on project appraisal is provided in the Scottish Government Flood Protection Scheme - Guidance for Local Authorities document. Only Chapters 5 and 6 of this document are currently available. Chapter 5 which covers the project appraisal guidance (assessment of economic, environmental and social impacts) was updated in February 2012.

Further guidance on Local Authority functions under the Act is available in the Flood Risk Management (Scotland) Act 2009 - Local Authority Functions Under Part 4 Guidance document⁷.

9.2 Guideline standard of protection

The Scottish Government do not specify design standards for flood protection schemes. However, the standard of protection against flooding typically used in Scotland is the 0.5% AP flood (1 in 200 year). This standard is the level of protection required for most types of residential and commercial/industrial development as defined by SPP.

Whilst design standards are a useful tool in terms of engineering goals and useful benchmarks, as well as in clear communication to stakeholders and the public, there is a general move in Scotland away from design standards to a risk based approach. Restricting options to desired standards of protection can limit consideration of factors that influence defence effectiveness and can limit future responses to external factors.

It is expected that a variety of protection levels are considered during the design process including the 0.5%, 1% annual probability and if appropriate a lesser level. The guidance also states that options should be tested against a "1% exceedance probability plus allowances for climate change to be included in all appraisals".

Based on the above guidance the aim of the scheme will be to assess options up to the 0.5% AP (200 year) flood if possible, but to test lower return period events if required. Each option has been assessed to achieve a:

- 1. 0.5% AP with an allowance for climate change level of protection
- 2. 0.5% AP level of protection

9.3 Long list of options

The following table provides an overview of potential flood alleviation options that could benefit Dalbeattie and the upstream area of Kirkgunzeon. Overall the analysis of the flood risk suggests that the main town of Dalbeattie and the village of Kirkgunzeon are well protected from river flooding by the existing flood defences. As a result, limited mitigation measures are required other than continued inspection, maintenance, flood warning, community awareness/self help and emergency planning.

The most significant risk is from the Edingham Burn where limited flood mitigation works were applied as part of the original FPS. In this location, additional measures would be beneficial to reduce the flood risk.

⁷ The Scottish Government, Flood Risk Management (Scotland) Act 2009 - Local Authority Functions Under Part 4 Guidance, July 2015: http://www.gov.scot/publications/2015/07/7909/0

Those that are considered to be most viable have been assessed further in Section 6.

Table 9-1: Available flood alleviation options for Dalbeattie

Category	Measure / Action	Discussion
Avoid	Relocation	Relocation is not a widely used method of flood mitigation in the UK partly due to the fact that the HM Treasury's economic appraisal methodology limits flood damages to the market value of the property. Decision: Unlikely to be economically or socially viable at this stage. Option not progressed further.
	Flood warning	Flood warning is not currently available for Dalbeattie other than as a regional flood alert from SEPA. Provision of flood warning in this catchment with sufficient lead time would be challenging and limited without some gauging of the river flows. Discussions with SEPA suggest that they are planning to extend coverage of flood warning for this catchment in the future In the longer term, we would recommend that discussions are held with SEPA to install river flow gauges within the catchment to start collecting the necessary information to support future flood warning and forecasting. This will also have secondary benefits of improving the long term hydrology estimates and any property level protection offered by the Council. <i>Decision: Viable option that should be assessed further</i> <i>through discussions between SEPA and D&G Council</i>
Prepare	Resistance	Flood resistance measures help mitigate floodwater from entering a building using a variety of techniques and products. Resistance measures such as airbrick covers and door guards are not currently provided by the Dumfries and Galloway subsidy scheme but the inclusion of Dalbeattie in this scheme, particularly for two large commercial properties has the potential to reduce the risk of damages considerably. This is discussed further in the section below. Decision: Viable option that should be assessed further
	Resilience (retrofit)	Flood resilience measures reduce the consequence of flooding and accept that flooding into a property can occur, but can be managed and cleaned rapidly after a flood with minimal disruption and temporary accommodation. These measures are usually only viable if they are undertaken after a flood event and as part of the repair process. Decision: Unlikely to be economically viable at this stage. Option not progressed further.
	Natural Flood Management	Natural flood management options have been considered in a separate report. Natural flood management options should focus on the catchment rather than single sites such as Dalbeattie. In the wider catchment there is some potential for floodplain storage and increasing channel sinuosity to lower channel water levels, however many good practices are already being employed by land owners and land managers. <i>Decision: To be considered alongside other options rather than alone.</i>
	Demountable defences	Demountable defences are linked to the availability of adequate flood warning and are typically used where direct defences are impractical, uneconomic or environmentally / aesthetically unacceptable. Temporary or demountable defences in Dalbeattie will unlikely

Category	Measure / Action	Discussion
		to be technically or practically suitable due to the long length of defences required, the short lead time and large staff numbers required to install. <i>Decision: Unlikely to be a practical option. Option not</i> <i>progressed further.</i>
	Direct defences	Direct defences are unlikely to be of use for the majority of the study area however the properties alongside and downstream of the Edingham Burn could benefit from the installation of defences to alleviate a large proportion of the modelled flooding in this area. <i>Decision: Viable option that should be assessed further.</i>
	Upstream storage	Upstream storage would have multiple benefits for flood risk throughout the catchment. However, there are many technical, environmental and economic constraints associated with damming the watercourse. As the standard of protection in the town is relatively good this option has not been considered as the costs would exceed the damages avoided by any scheme. Decision: Unlikely to be a practical or cost-effective option unless combined with a Natural Flood Management
		<i>scheme.</i> Channel modification as an independent option is unlikely to provide the benefits of flood protection. The options for channel
	Channel modification	widening are extremely limited and constrained by existing bridge crossings, existing defences and riparian ownership boundaries. Decision: Unlikely to be a practical option. Option not
		<i>progressed further.</i> There is no scope for channel diversion around the town of
	Diversion	Dalbeattie. Decision: Unlikely to be a practical option. Option not progressed further.
	Bridge adjustments	The current standard of protection for the bridges on the modelled watercourses is good, thus any adjustment to these is unlikely to reduce the flood risk further. Decision: Unlikely to significantly reduce flood risk. Option not progressed further.

9.4 Options in relation to SEPA Flood Risk Management Strategies

The Act places responsibilities on various authorities including SEPA, Scottish Water and Local Authorities to work collaboratively to responsibly and sustainably seek to reduce flood risk from all sources. The Scottish Environment Protection Agency (SEPA) and 14 lead local authorities are jointly consulting on the future direction and delivery of flood risk management in Scotland. Together, they are focusing on where the flooding impacts are greatest and where the benefits of investment can be maximised.

SEPA have recently published their Flood Risk Management Strategies (FRMS) in association with local authorities. These provide prioritised actions for flood mitigation in each PVA to allow the careful reduction of risk in a holistic way at a catchment level. This report achieves one of the actions identified by the FRMS and provides a more detailed assessment of the risks and options for mitigation than the SEPA strategy. The recommendations of this report will need to be fed into the wider SEPA Strategy and Local Flood Risk Management Plans.

9.5 Recommendations and quick wins

Overall the FPS assets are in good to fair condition but could benefit from minor upgrades, more regular inspection and maintenance of some elements.

There may be a number of short term or small scale measures that could benefit the town of Dalbeattie from future flooding. A number of different types of measures or short term 'quick wins' have been identified that cover a range of aspects from maintenance to small scale works. These are summarised in Table 9-2 and referenced geographically in Figure 9-1 and Figure 9-2 (also provided as an A3 plan in the Figures section of the report).

Figure 9-1: Location reference plan for recommendations and quick wins identified in Table 9-2.

Figure 9-2: Location reference plan for recommendations and quick wins identified in Table 9-2.

Table 9-2: Short term recommendations and quick wins

Ref.	FPS asset ref.	Problem	Action	Evidence
1	-	Regular water gates along channel increase potential of blockage	Consider removal or replacement with electric water gates to reduce risk of blockage. Consider telemetry or inspection to mitigate risk of blockage	
2	2, 9	Consider vegetation management	Manage vegetation to maintain conveyance	

Ref.	FPS asset ref.	Problem	Action	Evidence
3	3	Erosion of concrete sill on right bank adjacent to Munches Park	Monitor erosion	
4	5	Screen is not in line with current design standards, potential for blockage	Replace screen with one which meets current design standards	
5	-	Unflapped outfalls present along the Dalbeattie Burn	Check condition/presence and add/replace flap valves if necessary	Multiple outfalls present
6	-	Potential flow route onto John Street given 200 year + climate change flood event	Consider raising garden wall alongside burn and/or using outer perimeter garden wall as flood defence wall in longer-term	
7	7	Flood defence wall/embankment not fit for purpose	Consider repair or upgrade to embankment	
8	12, 15	Leylanddii growth between sections of flood defence wall	Monitor tree growth and structural impacts on defence wall	

Ref.	FPS asset ref.	Problem	Action	Evidence
9	14	Channel overgrown	Periodic maintenance of vegetation within channel	
10	17	Inconsistent defence level	Consider extending defence line behind bowling green	
11	26	Culvert barrels are approximately 50% blocked with sediment	Sediment management	
12	27	Vegetation growth on river side	Maintain embankment and monitor vegetation growth	
13	29	New pipe (unflapped) through culvert. Informal rock outfall added	Investigate pipe and fit flap valve. Consider removal or construction of headwall and flapvalve.	
13a	29	Risk of bypassing of flood embankment	Fit sluice gate on to inlet of pipe through culvert to prevent excessive flows bypassing embankment.	

Ref.	FPS asset ref.	Problem	Action	Evidence
14	30	Flap is stuck open by debris and bed material	Maintain flap valve, clear channel downstream, set up regular inspection regime	
15	-	Raised embankment by local landowners using dredged material - potential for impact on flood levels	Monitor dredging and embankment raising. Consider discussion with SEPA regarding CAR licence.	
16	-	Channel widening by local landowners	Monitor for possible channel instabilities and erosion. Consider discussion with SEPA regarding CAR licence.	
17	31	Channel overgrown and loose material on right bank has potential to block culvert	Channel maintenance and removal of loose material	
18	31	Screen could become overgrown	Review maintenance and access regime for screen	
Ref.	FPS asset ref.	Problem	Action	Evidence
------	----------------------	--	---	----------
19	33	Embankments could become overgrown	Maintain embankments	
20	33	Embankment access point lower than general crest level	Monitor level change at access point	
21	-	Screen on downstream face of bridge does not allow removal of blockages during flood events	Move screen to upstream face	
22	-	Watergate beneath A711 road bridge is in middle of bridge - poor access	Consider removal or moving watergate to somewhere with improved access	

JBA consulting

10 Short list of options

The selected short list of options have been assessed in more detail and included within the economic appraisal. Further details on each are provided below.

10.1 Do Nothing

The Do Nothing represents the 'walk away' scenario, cease all maintenance and repairs to existing defence and watercourse activities. This represents a scenario with no intervention in the natural processes. The 'Do Nothing' option is used within the appraisal as a baseline and a means of calculating the whole scheme benefits of the 'Do Something' option.

The Do Nothing option is not technically a viable option in Dalbeattie due to the presence of existing defence assets that the Council has a duty to maintain. Furthermore, the Council also has a duty to assess bodies of water and schedule works of clearance and repair if these would substantially reduce risk of flooding under the Flood Risk Management (Scotland) Act 2009.

10.2 Do Minimum

The 'Do Minimum' option represents the current situation with ongoing maintenance of the watercourse, channel banks and defence assets. This assumes that no blockage (other than permanent fixtures) are present on any structure.

10.3 Option 1 - property level protection

Property Level Protection (PLP) is flood resistance and resilience measures however it generally takes the form of demountable door guards and air brick covers. Dumfries and Galloway employs a subsidy scheme that would be used to implement this option. Under this scheme, residents can purchase PLP products from the Council at a subsidised rate.

Figure 10-1: Examples of PLP (automatic airbrick and door guard)

PLP products are generally considered reliable up to a depth of 0.6m due to structural integrity of buildings. Therefore, to assess the feasibility of PLP the number of properties at risk from direct flooding and those that could benefit from installation of PLP products are displayed in Table 10-1. The table below shows that for the 200 year flood, 16 properties could benefit from PLP, although one has a flood depth that exceeds the standard 0.6m depth (although only marginally at 0.64m). Careful selection of products may be needed for this property, and in the very least a survey of the property would be required.

The table also shows that many properties would only require very margin low cost options to protect against inundation as many are predicted to flood below the threshold only. In these instances automatic air-bricks alone may be appropriate to protect the homes (garages and outbuildings may require additional protection however). This is particularly the case for the 200 year flood where 12 properties could be protected for by relatively low cost measures.

As the standard of protection to residential properties is high (50 year SOP), the implementation of PLP would need to be combined with education for homeowners, regular trial runs and exercises

JBA consulting

to ensure that the community can manage and respond adequately to flood events. This would be a challenge over the long term for this site where flood risk is relatively low.

The two properties modelled to be at risk at lower return periods are the Burnside Hotel and the Munches Park House (a care home). Specialist surveys and advise may be required to provide property level protection for these two larger properties.

Table 10-1: Number of properties at risk and protected

Scenario	10 year	25 year	50 year	100 year	200 year	200 year CC	1000 year
Properties at risk (above floor level)	2	2	2	3	4	28	41
Properties at risk (below floor level)	3	3	3	9	16	51	88
No. properties at risk with PLP assuming a 0.6m limit	0	0	0	0	1	1	3
The property counts represent both residential and commercial properties and include all properties flooded above the surveyed floor level and to a depth 300mm below the floor level (sub floor or solum							

flooding).

Furthermore, specific flood warning and forecasting would be required on the catchment to provide the necessary lead time for the community to react to flood warnings. If this cannot be implemented (indeed, there are challenges to providing adequate lead times on a small catchment), an automatic approach to PLP may be preferable. Automatic PLP products aim to be passive and do not require homeowner intervention prior to a flood. The downside of these products is that they are more expensive and may not be available via the Dumfries and Galloway subsidy scheme.

Outcome: Until flood forecasting can be provided an automatic PLP approach is preferred. Benefits and costs of this option to be assessed.

10.3.1 Lower cost PLP option

The above approach is the preferred recommendation for implementation of PLP in Scotland based on Scottish Government guidance. However it does not take into account the Council's current subsidy scheme for PLP products. The use of this scheme could achieve many of the flood benefits stated above at a lower cost. However, the approaches provided are generally manual approaches that require installation prior to a flood. Such an approach therefore would require some form of flood warning, although this could be provided by the Council in the absence of any SEPA gauging and catchment flood warnings.

10.4 Option 2 - Raised flood defences along Edingham Burn to provide a 1 in 200 year standard of protection

The majority of the flood risk emanates from the Edingham Burn reach which is not protected by any flood defences in the upper urban reach. All of the properties at risk at the 200 year flood are at risk from the Edingham Burn. This is the same for the 200 year flood with an allowance for climate change, although some additional out of bank flows are predicted for this event (but no additonal properties).

Based on the modelling undertaken, direct defences could be constructed to the right bank of the Edingham Burn in the form of a sub-1.2m stone or concrete wall. A wall would be the preferred option here to avoid encroachment into gardens by embankments, although some form of channel realignment/widening could also be used to reduce the land take on the right bank. Figure 10-2 shows the indicative location of the new walls that would need to be constructed along the right bank of the Edingham Burn.

Figure 10-2: Proposed defence location along Edingham Burn to protect a large area of northern Dalbeattie

It should be noted that the above analysis assumes no additional flows from the Kirkgunzeon Lane and the bypass route around Bar Hill (see Section 7.2.1). Further analysis is required of this risk at detailed design stage. However, we would recommend that either a secondary embankment is built to prevent this flow path or the additional flows are considered as part of the design or within the freeboard allowance.

10.5 Option 3 - Option 2 plus improvements to Asset 7 and Asset 17

A potential flow route has been identified over the wall/embankment in Colliston Park at the upper end of Asset 7 (see Appendix B) on the left bank of the river. The wall currently has a standard of protection of 200 years, with extremely limited freeboard.

Repair and raising of this wall is priority to protect properties directly downstream of Colliston Park in Dalbeattie for events in excess of the 200 year flood and to incorporate climate change. The proposed changes would entail raising the wall by up to 0.6m to provide a standard of protection of 200 years with an allowance for climate change.

Current defences have been found to be incomplete around the bowling green in Dalbeattie, downstream of Asset 17 (right bank). This area has a 200 year standard of protection based on the existing flood defences. With an allowance for climate change, the area is predicted to be at risk with flood depths in the order of up to 0.4m, however the bowling green and the clinic to the north both have floor levels above the predicted flood levels.

Technically, flood risk to the properties is therefore minimal, although there would be clean up and repair costs associated with the car park and the bowling green. This however is unlikely to justify an increase in the flood defence height to provide a 200 year standard of protection with an allowance for climate change.

If this area was to be protected a new wall would be recommended to increase the height of the current embankment and to extend the embankment downstream to limit flows leaving the channel. A wall of up to 0.5m height would provide a standard of protection of 200 years with an allowance for climate change.

To summarise, in order to provide a 200 year standard to Dalbeattie with an allowance for climate change the following works would be required:

- Flood defences on the Edingham Burn as per Option 2.
- Raised wall/embankment at Colliston Park.

10.6 Summary of options assessed

Based on the long list and short list appraisal of options assessed above we recommend that the following options are considered further in the economic appraisal:

- Do Minimum.
- Option 1 Property Level Protection.
- Option 2 200 year SOP for Edingham Burn.
- Option 3 200 year SOP with an allowance for climate change for Edingham Burn and the rest of Dalbeattie.

It should be noted that whilst the flood defence at Maidenholm has a lower standard of protection than the preferred 200 year flood, this defence only protects agricultural land as is not considered in need of improvement (notwithstanding the risk of bypassing of flows around Bar Hill).

Flood risk to the Kirkgunzeon village is minimal as the flood defences present offer a good standard of protection. The Kirkhouse farm buildings in Kirkgunzeon would ideally be protected as would Corra farm but the type of buildings at risk may well not necessitate immediate action as they have a good standard of protection and may be relatively resilient to flooding.

11 Damage methodology

Flood damage assessment can include direct, indirect, tangible and intangible aspects of flooding, as shown in the Figure 7-1. Direct damages are the most significant in monetary terms, although the MCM and additional research provide additional methodologies, recommendations and estimates to account for the indirect and intangible aspects of flood damage.

Figure 11-1: Aspects of flood damage

Flood damage estimates have been derived for the following items:

- 1. Direct damages to residential properties;
- 2. Direct damages to commercial and industrial properties;
- 3. Indirect damages (emergency services);
- 4. Intangible damages associated with the impact of flooding;
- 5. Damage to vehicles;
- 6. Emergency evacuation and temporary accommodation costs.

The following assumptions and additional data were used to improve and provide the necessary information to supplement the above datasets.

11.1 Direct damages - methodology

The process to estimate the benefits of an intervention option is to plot the two loss-probability curves: that for the situation now, and that with the proposed option as shown in Figure 7-2. The scale on the y axis is the event loss (\pounds) ; the scale on the x axis is the probability of the flood events being considered. When the two curves are plotted then the difference in the areas beneath the curve is the annual reduction in flood losses to be expected from the scheme or mitigation approach.

Figure 11-2: Loss Probability Curve

To derive these two curves, straight lines are drawn between the floods for which there are data from the threshold event (the most extreme flood which does not cause any damage) to an extreme flood above the intended standard of protection. The greater the number of flood event probabilities, the more accurately the curves can be plotted.

11.1.1 Flood damage calculation and data

The FHRC Multi Coloured Manual (MCM) provides standard flood depth/direct damage datasets for a range of property types, both residential and commercial. This standard depth/damage data for direct and indirect damages has been utilised in this study to assess the potential damages that could occur under each of the options. Flood depths within each property have been calculated from the hydraulic modelling by comparing predicted water levels at each property to the surveyed threshold levels.

A flood damage estimate was generated using JBA's in-house flood damage tools. These estimate flood damages using FHRC data and the modelled flood level data. Each property data point was mapped on to its building's footprint. A mean, minimum and maximum flood level within each property is derived using GIS tools based on the range of flood levels around the building footprint. The inundation depth is calculated by comparing water levels with the surveyed threshold level. The mean (based on mean flood water level across the building floor's area) flood damage estimates have been calculated and are presented in Table 8-2.

The following assumptions, presented in the Table 8-1, were used to generate direct flood damage estimates.

Aspect	Values used	Justification
Flood duration	<12hrs	Flood water is not anticipated to inundate properties for prolonged periods.
Residential property type	MCM codes broken down by type and age.	Appropriate for this level of analysis.
Non-residential property type	Standard 2013 MCM codes applied.	Best available data used.
Upper floor flats	Upper floor flats have been	Whilst homeowners may be

Table 11-1: Damage considerations and method

Aspect	Values used	Justification
	removed from the flood damage estimates.	affected it is assumed that no direct flood damages are applicable.
MCM damage type	MCM 2013 data with no basements.	Most up to date economic analysis data used. Basements are not appropriate for the type of properties within the study area.
MCM flood type	MCM 2013 fluvial depth damages for combined fluvial-tidal scenario.	Best available data used.
Threshold level	Thresholds surveyed by surveyor for the majority of properties in area of interest.	Best available data used.
Socio-economic equity	Distributional Impacts (DI) impacts derived from the 2001 census show no significant difference in "DE" social grades compared to the national average.	As per Treasury Green Book recommendations, analysis of DI is not deemed to be necessary and has been excluded.
Property areas	OS Mastermap used to define property areas	Best available data used.
Capping value	Residential properties based on house prices from Zoopla. Commercial properties valued from rateable values for individual properties (supplied by SAA).	Best available data used.

11.1.2 Property data set

The property dataset was compiled for all residential and commercial properties. The majority of these properties were visited by a JBA Surveyor during the threshold survey.

11.1.3 Capping

The FHRC and appraisal guidance suggests that care should be exercised for properties with high total (Present Value) damages which might exceed the market value of the property. In most cases it is prudent to assume that the long-term economic losses cannot exceed the capital value of the property.

The present value flood damages for each property were capped at the market value using average property values obtained from internet sources (e.g. Zoopla).

Market values for non-residential properties were initially estimated from a properties rateable value based on the following equation:

Capital Valuation = (100/Equivalent Yield) x Rateable Value

Rateable values for all available properties in Dalbeattie were obtained from the Scottish Assessors Association website⁸. Equivalent yield varies regionally and temporarily, but is recommended to be a value of 10-12.5 for flood defence purposes⁹. A value of 12.5 was used.

However the resulting property valuations were judged as been undervalued. An alternative approach was used where by the estimated value is 3 times the max depth damage MCM curve damage value for the commercial property type multiplied by the properties ground floor area.

11.1.4 Updating of Damage Values

The MCM data used is based on January 2015 values and therefore do not need to be brought up to date to compare the costs and benefits.

⁸ www.saa.gov.uk

⁹ Environment Agency (2009). Flood and Coastal Erosion Risk Management - Appraisal Guidance.

11.1.5 Socio-economic equity

Work on the impacts of flooding on individuals has shown that flooding may affect people according to aspects such as their income. The rationale being that a loss will matter more to a person on low income compared to someone with a high income. Current advice from the Scottish Government, based on advice from the Treasury Green Book recommends that Distributional Impacts (DI) analysis should be undertaken if it is 'necessary and practical'. Analysis has been carried out with and without the influence of Distributional Impacts.

Assessing whether it is necessary is based on the mix of social grades and levels of income within the appraised area. Analysis of the 2001 Census data for Dalbeattie indicates that there are a high proportion of lower social group households. Table 11-2 illustrates this proportion and indicates that 31% of people in Dalbeattie are in the 'DE' social grade. This is more than the Scottish average but very similar to the average for Dumfries and Galloway, thus the analysis of DI is deemed not to be necessary.

Location	AB	C1	C2	DE				
Dalbeattie	11%	25%	33%	31%				
Dumfries & Galloway	14%	25%	32%	30%				
Scotland	19%	31%	24%	26%				
Difference	-3%	0%	7%	5%				
The total number of pe	The total number of people represents those aged 16+ for which a grade can be applied.							

Table 11-2: Proportion of social grades within Dalbeattie

The above analysis suggests that if comparing Dalbeattie with another area requiring funding, the socio-economic aspects of flooding should not be considered as a pound spent at Dalbeattie is unlikely to have a greater benefit than that spent at an alternative location with a lower social impact.

We recommend that distributional impacts are not considered at this stage and the recommended scaling of the total damages by the social grade weighting factors provided in Table 7-4 is not undertaken.

Table 11-3: Total weighted factors by social grade group

Class	AB	C1	C2	DE			
Weighting	0.74	1.12	1.22	1.64			
Factors are provided in Chapter 5 (section 4.1.22) of the Scottish Government's Flood Prevention Scheme guidance document.							

11.2 Intangible damages

Current guidance indicates that the value of avoiding health impacts of fluvial flooding is of the order of £286 per year per household. This value is equivalent to the reduction in damages associated with moving from a do-nothing option to an option with an annual flood probability of 1:100 year standard. A risk reduction matrix has been used to calculate the value of benefits for different pre-scheme standards and designed scheme protection standards.

11.3 Indirect damages

The multi coloured manual provides guidance on the assessment of indirect damages. It recommends that a value equal to 10.7% of the direct property damages is used to represent emergency costs. These include the response and recovery costs incurred by organisations such as the emergency services, the local authority and SEPA.

11.3.1 Indirect commercial damages

Obtaining accurate data on indirect flood losses is difficult. Indirect losses are of two kinds:

losses of business to overseas competitors, and

- JBA consulting
- the additional costs of seeking to respond to the threat of disruption or to disruption itself which fall upon firms when flooded.

The first of these losses is unusual and is limited to highly specialised companies which are unable to transfer their productive activities to a branch site in this country, and which therefore lose to overseas competitors. The second type of loss is likely to be incurred by most Non Residential Properties (NRPs) which are flooded. They exclude post-flood clean-up costs but include the cost of additional work and other costs associated with inevitable efforts to minimise or avoid disruption. These costs include costs of moving inventories, hiring vehicles and costs of overtime working. These costs also include the costs of moving operations to an alternative site or branch and may include additional transport costs.

Chapter 5, Section 5.7 of the MCM (2013)¹⁰ recommends estimating and including potential indirect costs where these are the additional costs associated with trying to minimise indirect losses. This is by calculating total indirect losses as an uplift factor of 3% of estimated total direct NRP losses at each return period included within the damage estimation process.

11.3.2 Vehicle losses

Chapter 4, Section 4.5.7 of the MCM (2013) recommends that the average loss associated with vehicle damage during flood events should be determined using a value of £3,600 per property flooding to a depth greater than 0.35m. This value has been applied to all properties flooding to a depth greater than 0.35m within Dalbeattie for each return period flood event assessed and the AAD and PVd calculated as normal.

¹⁰ Penning-Rowsell et al., 2013. Flood and Coastal Erosion Risk Management - A Manual for Economic Appraisal

12 Summary of total flood damages

12.1 Properties at risk

The total number of properties inundated for the Do Minimum Scenario has been assessed are provided in Table 12-1.

	2 year	10 year	25 year	50 year	100 year	200 year	200 CC year	1000 year
Residential	0	0	0	0	1	2	11	14
Non-residential	0	2	2	2	2	2	17	27
Total	0	2	2	2	3	4	28	41

Table 12-1: Number of properties flooded within appraisal area for the Do Minimum Scenario

12.2 Do Minimum event damages

Event damages have been calculated for a range of return periods. JBA's damage calculation spreadsheets provide event damages based on MCM depth damage curves. Full results are provided in Appendix H. The event damage for each option is provided in Table 9-2. These represent the total potential flood damages based on the modelled flood levels for Dalbeattie for the current existing case. Damages include all direct and indirect property flood damages.

Table 12-2: Total property flood damage for each scenario (£) (prior to capping)

	10 year	25 year	50 year	100 year	200 year	1000 year
Residential	2	2	2	17	67	427
Non-residential	179	277	329	349	390	1150
Total	181	278	331	366	457	1577

The above damages are used to calculate Annual Average Damages (AAD). Plotting the damages against the frequency of flooding (annual probabilities) allows us to determine the AAD as the area beneath the curve (Figure 12-1). This figure shows that flood damages are relatively small for the lower to medium flood events, but rises significantly once the flood defences are exceeded.

Figure 12-1: Loss probability curve for the Do Minimum baseline

Typically, the majority of the benefits arise from the reduction in losses from the more frequent events. The interval benefits for Dalbeattie are presented in Figure 12-2. This shows that the much of flood damages occur at the more frequent flood events - those properties at risk from the Edingham Burn.

12.2.1 Key beneficiaries

The flood damages derived have been ranked and assessed in terms of the proportion of flood damages per property. This highlights key beneficiaries of the scheme and is a useful auditing tool. The top 10 properties with highest flood damages from all sources have been listed in Table 12-3 below.

This illustrates that the highest flood damages are generated from predominantly 2 commercial properties accounting for approximately 90% of the total damages. Further discussion with these property owners may be useful to determine if they have been flooded in the past from the Edingham Burn. A lack of evidence of flooding may suggest that the flood mapping is overestimating the risk to these properties or that surface water drainage not considered by the 2D modelling is alleviating some of the flood risk in this overland flow path.

Rank	Property address	PVd (£k)	Percentage of total PVd
1	Munches Park House, Barhill Road, Dalbeattie. DG5 4JB	655.4	55%
2	Burnside Hotel, John Street, Dalbeattie. DG5 4JJ	411.1	34%
3	Waterside, John Street, Dalbeattie. DG5 4JJ	23.2	2%
4	56-60 High Street, Dalbeattie. DG5 4AA	7.4	1%
5	Ferguslea, Burn Street, Dalbeattie. DG5 4AE	6.1	1%
6	15A High Street, Dalbeattie. DG5 4AD	6.1	1%
7	Miromar, 9 Queen's Grove, Dalbeattie. DG5 4JG	5.9	0%

 Table 12-3:
 Top 10 highest damage contributors for the Do Minimum Scenario

8	32 High Street, Dalbeattie. DG5 4AA	5.2	0%
9	Dalbeattie and District Day Centre, Burn Street, Dalbeattie. DG5 4AE	5.0	0%
10	24 High Street, Dalbeattie. DG5 4AA	4.0	0%

12.2.2 Summary of Do Minimum Indirect and intangible damages

The indirect and intangible damages have been estimated for the Do Minimum option based on the methodology outlined in the Chapter 11. A summary of the proportion of total damages by each damage component is provided in Figure 9-3 and in Table 12-4.

Figure 12-3: Total PV damages for the Do Nothing by damage component (£k)

Table 12-4: Do Minimum flood damage (£k)

Scenario	Property	Property	Indirect	Indirect Intangible	
	AAD	PVd	PVd	PVd PVd	
Flood damages	40.1	1,196	68	58	1,322

12.3 Option 1 - Property Level Protection Damages

Analysis of the property level protection option has been assessed by reducing flood damages for those properties at risk (most are predicted to flood to depths less than 0.6m, with a maximum of 0.64m). The total flood damages for each modelled return period is presented in Table 12-5. One property is excluded from the scheme as it is outwith the Edingham flood risk zone (at Forgewood).

Table 12-5: Comparison of Do Minimum and PLP properties at risk and direct property damages (£k)

Scenario	10 year	25 year	50 year	100 year	200 year	1000 year
Do Minimum - properties at risk	3	3	3	9	16	88
PLP Option - properties at risk	0	0	0	1	1	88
Do Minimum - flood damages	181	278	331	366	457	1,577

Total AAD and PVd for the PLP option is presented in Table 12-6. The use of PLP reduces the AAD significantly compared to the Do Minimum baseline assuming all properties at risk from the 200 year return period have PLP installed.

Table 12-6: Summary of flood damages for direct defence option (£k)

Scenario	Residential AAD	Residential PVd	Indirect PVd	Intangible PVd	Total PVd
Do Minimum	40.1	1,196	68	58	1,322
Option 1 - PLP (200yr)	6.9	154	30	26	210

It is assumed that the damages avoided by the PLP option are reduced by 10% to allow for the risk of failure of the measures during flood events (operator or product failure). This reduces the damages avoided from $\pounds1,112k$ to $\pounds1,001k$. A small reduction is applied as the assumption is that automatic measures would be used in Dalbeattie.

12.4 Option 2 - Raised defences - Edingham Burn in Dalbeattie

Analysis of the raised defence option has been assessed by assuming zero flood damages for each return period assessed up to and including the design flood. Flood damages for above design events are assumed to be the same as the Do Minimum option. The total flood damages for each modelled return period are not shown as they are exactly the same as those shown in Table 12-5.

Total AAD and PVd for the PLP option is presented in Table 12-7. The use of PLP approximately halves the AAD compared to the Do Minimum baseline assuming all properties at risk from the 500 year return period have PLP installed. However, using PLP alone may be acceptable as it only provides a 10 year standard of protection to the community with some properties still at risk at the 25 year return period and above.

Scenario	Residential AAD	Residential PVd	Indirect PVd	Intangible PVd	Total PVd
Do Minimum	40.1	1,196	68	58	1,322
Option 2	6.9	154	30	26	210

Table 12-7: Summary of flood damages for direct defence option (£k)

12.5 Option 3 - 200 year SOP in Dalbeattie with climate change

Analysis of the raised defence option has been assessed by assuming zero flood damages for each return period assessed up to and including the design flood. Flood damages for above design events are assumed to be the same as the Do Minimum option. The total flood damages for each modelled return period are not shown as they are exactly the same as those shown in Table 12-5.

A key difference for Option 3 is that the scheme would be designed to incorporate an increase in flood damages due to climate change. Under this option flood damages and the benefits of protecting against the anticipated increases in flood flows with climate change needs to be taken into consideration. This is assessed further in the sections below.

12.5.1 Impact of climate change

The impact of climate change over the life of a scheme was undertaken to see if the impact of a 20% increase in flood flows by 2080 for all return periods assessed would significantly increase the flood damages and thus the benefits of protecting the scheme to a 200 year standard with an

allowance for climate change. The assumption is that over the life of the scheme, and assuming that the design included the allowance for increasing flows, the economic benefits would increase over the scheme life.

This has been assessed by estimating what a specific return period today would be by 2080 assuming a 20% uplift in flows for all return periods. An example of this process is shown graphically in Figure 12-4. The chart shows that, for example, a 200 year flood today will be equivalent to 100 year flood in 2080. The severity of the flood will be the same but it will be occurring more regularly on average.

Figure 12-4: Difference in flows under the climate change scenario

12.5.2 Methodology

Guidance on incorporating climate change¹¹ into benefit-cost assessments recommends that for each option, climate change allowances on flood flows at future time steps are applied over the evaluation period. The economic loss results are summed using agreed discount factors to determine the whole life benefits.

The impact of climate change on the scheme has been assessed by calculating the present day and the 2080 average annual benefits for the Do Minimum and each option. 2080 AAD have been calculated by changing the annual probability for each flood return period assessed, using Figure 12-4 as a guide.

Thus the annual average damages have been derived at years 2015 and 2080. The results for each intervening period have been linearly interpolated and discounted to obtain the total present value damage over the 100 year appraisal period.

12.5.3 Results

Total AADs for the two periods assessed are provided below, along with the resultant whole life present value estimates and damages avoided for each option assuming climate change can be built into the designs.

¹¹ Defra/EA, 2003. UK Climate Impacts Programme 2002. Climate change scenarios: Implementation for Flood and Coastal Defence Users. R&D Technical Report W5B-029/TR.

Table 12-8: Impact of climate change on Do Minimum scenario (£k)

	AAD damages (£k) 2015	AAD damages (£k) 2080	AAD damages (£k) 2114	PV total damage (£k)	PV damages avoided (£k)
Do Minimum	44.4	68.8	68.8	1,609	-
Option 3	7.1	12.5	12.5	274	1,335

Based on these assumptions, the total Do Minimum flood damages are estimated to increase from \pounds 1,322 at the present day to \pounds 1,609k by 2080. Damages for Option 3 would be \pounds 1,335.

12.6 Summary of flood damages

A summary of the damage reductions for each option assessed by damage category is provided in Figure 12-5 below. This shows the significance of the non-residential properties in terms of total flood damages and how the options proposed will reduce this. In reality, as the majority of flood damages are generated from just 2 properties, the protection of these properties could significantly reduce the total flood damages, although wider disruption would remain.

Figure 12-5: Total PV damages for each option assessed broken down by damage component (£k)

13 Cost estimates

13.1 Price Base Date

The price base date is January 2015. Cost calculations have therefore been updated to the same date in order to compare the benefits and costs on an equal basis. The costs and benefits have been discounted over the 100 year life of the scheme to determine present values.

13.2 Whole life cost estimates

The outputs from SEPA's 'Costing of Flood Risk Management Measures'¹² project were used for the purpose of this assessment. This project was undertaken by JBA and provided a range of cost summary reports for use by SEPA in their Flood Risk Management Strategies. The data provides a range of costs for a portfolio of flood defence measures and is ideally suited to strategic level studies.

Whole life costs are typically compiled from the following four key cost categories:

- 1. Enabling costs. These costs relate to the next stage of appraisal, design, site investigation, consultation, planning and procurement of contractors.
- 2. Capital costs. These costs relate to the construction of the flood mitigation measures and include all relevant costs such as project management, construction and materials, licences, administration, supervision and land purchase costs (if relevant).
- 3. Operation and maintenance costs. Maintenance of assets is essential to ensure that the assets remain fit for purpose and to limit asset deterioration. Costs may include inspections, maintenance and intermittent asset repairs/replacement.
- 4. End of life replacement or decommissioning costs. These costs are only required when the design life of assets is less than the appraisal period. Most assets are likely to have a design life in excess of the 100 year financial period, therefore these costs are unlikely.

Whole life (present value) costs have been estimated based on the above enabling, capital and maintenance costs. The following assumptions have been made:

- 1. The life span of the scheme and appraisal period is 100 years.
- 2. Discounting of costs are based on the standard Treasury discount rates as recommended by the 2003 revision to the HM Green Book (3.5% for years 0-30, 3.0% for years 31-75 and 2.5% for years 76-99).
- 3. Capital costs are assumed to occur in year 1 (equivalent to 2016).
- 4. Enabling costs are assumed to be complete in year 0.

13.3 Optimism bias

An optimism bias of 60% has been applied and is representative of a scheme at the appraisal design stage of development. This provides a significant safety factor for cost implications and risks.

13.4 Option 1 - Property Level Protection costs

PLP can be a cost effective option for small to moderate flood events or where shallow flooding is observed. This is the case in Dalbeattie from the Edingham Burn where the majority of flood depths is predicted to be less than 0.6m. Furthermore, two properties have a lower standard of protection and contribute to the majority of the flood damages. Targeting these two properties would alleviate a large proportion of the damages across Dalbeattie, but may have higher than usual costs associated with PLP due to the non-standard nature of the properties (non-residential).

¹² SEPA, 2013. Costing of Flood Risk Management Measures (F4006): Category 13 - Fluvial Defence Measures

Table 13-1: Properties needing PLP (£/m)

Туре	10 yr	25 yr	50 yr	100 yr	200 yr
Properties flooded below threshold level	1	1	1	6	12
Properties flooded above threshold level	2	2	2	3	4

The determination of PLP costs for all properties including the Munches Park House care home and Burnside Hotel, is difficult given the large number of windows and doors which would require protection. A bespoke solution would likely be required for each and would likely incur considerably higher costs than would be expected under usual PLP costs estimations. As an example, a PLP scheme for a similarly sized building to Munches Park House, operating as a Medical Centre, incurred capital costs of £107,000. Similar costs could therefore be expected for Munches Park House.

Offsetting this high cost is the relatively low cost associated with providing PLP to properties that are predicted to flood, but not above the floor level of the property (sub floor level flooding only). In these instances relatively minor measures are required - predominantly automatic airbricks. For this reason, much lower costs have been assumed (£2,000 per property).

Costs for other property types are based on the Scottish Government report on the 'Benefits of PLP' and provided in Table 13-1 below. We have assumed the following whole life costs for each property type.

Property type	Cost for sub floor level flooding	Cost for above threshold flooding
Detached	£2,000	£18,606
Flat	£2,000	£12,925
Semi	£2,000	£17,817
Terrace	£2,000	£12,749
Office	£3,000	£27,274
Shop	£3,000	£24,206
Hotel	£4,000	£18,606
Care Home	£4,000	£100,000

Table 13-2: Cost per property by flood depth and property type

Total costs for Option 1 to provide a 200 year standard are estimated to be:

• Whole life costs - £179,000

13.5 Option 2 and 3 - Raised defences

Costs for these 2 Options assume that to provide protection low walls would be needed on top of the current top of banks. In some instances it will be necessary to create a new embankment, install walls along a currently undefended reach or to increase the height or replace walls already in place.

The total length of defence where modelled 0.5% AP flood levels currently exceed the elevation of the current defences is 180m for Option 2 (to provide a 200 year SOP on the Edingham Burn) and 240m for Option 3 (to provide a 200 year SOP with climate change on the Edingham Burn and the rest of Dalbeattie). Defence increases have been calculated to ensure sufficient freeboard throughout the reach.

The direct defence costs have been based on values provided in SEPA's Cost of Flood Risk Management Measures Report¹². The cost estimates account for all costs associated with the project over its expected life. Tables of the costs for new walls, raising current walls and sheet piled walls are compiled below in Table 13-3 to Table 13-4.

Table 13-3: Wall cost per metre (£/m)

Length (m)	< 1.2m	1.2 - 2.1 m	2.1 - 5.3m	> 5.3m
Average	1,419	2,905	3,577	1,1168
Minimum	7,75	1,144	1,950	3,505
Maximum	1,624	4,591	4,615	13,105

Table 13-4: Wall raising cost per metre (£/m)

Length (m)	< 1.2m	1.2 - 2.1 m
Average	1,029	2,177
Minimum	7,75	1,073
Maximum	1,378	2,390

The maximum costs have been assumed since the risk is unclear at this stage whilst the style and placement of the defences selected likely minimises any potential risk. Risks could emerge from multiple landowners being involved, limited working space, the proximity to unknown services and mixed access meaning that the river itself may be required for access in places.

The defences which require additional protection of current assets and those that are wholly new are summarised in Table 13-5 and Table 13-6 below. The height of defences were calculated as an average for each length. The average height of each length of defence was calculated based on flood levels plus 0.3m freeboard and based on current flood levels and ground levels. It is assumed that Asset 04, the sheet piled wall, is not to current design standards and will need to be replaced in full rather than simply raised. For the calculation of PVc Asset 04 was replaced at the same time as the other capital costs occurred.

Table 13-5: Unit and total estimated defence costs - 200 year event

Location	Defence type	Typical defence height (m)	Lengt h (m)	Unit cost	Total cost
Option 2 - Edingham Burn	New wall	<1.2m	180	£1,624	£292,320
Option 3 - Edingham Burn and Dalbeattie	Wall raising	<1.2m	60	£1,378	£82,680

In addition to the above the following additional costs are assumed:

- Enabling costs of 15% have been assumed
- Annual maintenance costs of up to £0.85/m/annum

Total cash and present value (PV) costs are provided for the two options assessed in Table 13-6. Table 13-6: Cash costs and total whole life (PVc) costs for Option 2 and Option 3 (£k)

Element	Option 2 - 200 year return period	Option 3 - 200 Year return period with climate change
Enabling cost	44	61
Capital cost	292	375
O&M cost	15	20
Total PVc	£331	£424

13.6 Cost summary

A summary of costs with optimism bias applied is presented in Table 13-7 below.

Table 13-7: Option cost summary with optimism bias (£k)

Option	200 year	200 year with climate change
Option 1 - PLP	£179	-
Option 2 - New defences along Edingham Burn to provide a 200 year SOP	£331	-
Option 3 - New defences along Edingham Burn and raised defences in Colliston Park to provide a 200 year SOP with climate change	-	£424

14 Benefit-cost analysis

14.1 Introduction

This section discusses the economic appraisal carried out during this study. The methods of calculating the benefits and costs are outlined together with an assessment of the benefit-cost ratios for the range of options assessed.

Benefit cost analysis looks at a flood risk management strategy or practice and compares all the benefits that will be gained by its implementation to all the costs that will be incurred during the lifetime of the project.

In accordance with the Scottish Government appraisal guidance, benefits are taken as annual average damages avoided, expressed as their present value using Treasury discount rates. These are compared with the whole life cost of the capital and maintenance costs of selected options, expressed as present value. If the benefits exceed the costs for the option, the scheme is deemed to be cost effective and worthwhile for promotion.

Benefits are assessed as the flood damages that will be avoided by the implementation of a project. To calculate these it is necessary to assess the damages that are likely to occur under both the Do Nothing and Do Something scenarios. The benefits of any particular Do Something option can then be calculated by deducting the Do Something damages from the Do Nothing damages.

14.2 Guidance and standard data

The principles of benefit-cost ratio calculations are summarised as follows:

- Derive the damages associated with do-nothing;
- Derive the damages associated with each scheme option;
- Derive the benefits (damages avoided) associated with each option;
- Derive the costs for each option; and
- Derive the benefit-cost ratios for each option.

14.3 Benefit-cost results

A summary of the flood damage results for the proposed PLP option are provided in Table 14-1. All options assessed are economically viable with benefit-cost ratios greater than 2 for all options.

Table 14-1: Summary of benefit-cost calculation (£k)

	Do Minimum	Option 1	Option 2	Do Minimum with climate change	Option 3
Total PV costs (£k)	-	179	331	-	424
Total PV costs + Optimism bias (£k)	-	286	530	-	678
PV damage (£k)	1,322	210	210	1,609	274
PV damage avoided (£k)	-	1,112	1,112	-	1,335
Benefit-cost ratio	-	3.5	2.1	-	2.0
Incremental BCR	-	-	0.5	-	1.5

14.3.1 Economic preferred option

The option with the largest benefit cost ratio is Option 1 - the PLP option with a BCR of 3.5. However, this does not take into account any additional costs associated with necessary flood warning that would be beneficial for PLP for the Edingham and Kirkgunzeon Lane catchments.

The two structural options are both cost effective with BCRs greater than 2. The Incremental benefit-cost ratio (IBCR) attempts to determine if the extra cost of moving from the least cost option to the more expensive option is outweighed by the extra benefit. In the case of moving from Option 1 to Option 2 the IBCR is less than 1 suggesting that it is not worth moving from Option 1 to Option 2. The IBCR of moving from Option 2 to Option 3 is 1.5 suggesting that it would be worthwhile.

Option 1 is therefore preferred but all of the options assessed could be developed in the longer term. The use of Option 1 as a short term method, perhaps progressed using the Council's subsidy scheme would be beneficial.

15 Conclusion and Recommendations

This report presents the results of a detailed flood risk appraisal of Dalbeattie and the upstream community of Kirkgunzeon from the Kirkgunzeon Lane. These areas are protected by a Flood Prevention Scheme constructed in 1981. Direct overtopping of the flood defences have not been witnessed since construction, however there have been a number of flood events from other sources within the town.

A detailed hydrological assessment of the Kirkgunzeon Lane and Edingham Burn has been undertaken to derive flow inputs into a hydraulic model of the rivers through Dalbeattie and Kirkgunzeon. Whilst the flow estimates are carried out using standard FEH methodologies, without any gauging of the watercourses the design flow estimates should be treated with caution.

Previous survey used for the SFDAD study in 2005 was used and complimented with additional survey undertaken by JBA. This was used to build a 1D model and a linked 1D/2D TuFLOW flood model. Flood mapping has been undertaken and is based on the 1D-2D modelling and the underlying topographical data. Flood maps were prepared for each event and include the 2, 10, 25, 50, 100, 200, 200 plus climate change, and 1000 year return periods. The flood mapping is an improvement on available national datasets from SEPA and should be used by the Council for planning considerations.

The model results estimate that 16 properties would be affected during a 200 year flood; the majority of which are residential with two key commercial properties: a care home and hotel. These properties are at risk from the Edingham Burn. Annual average flood damages are estimated to be £40,100 with a Present Value damage in the region of £1.3 million.

15.1 Hydrometry and warning recommendations

Any flood defence improvements or significant capital spent would benefit from some flow gauging over a period of time to improve the flow estimates. This would also support future flood warning and forecasting on the catchment by providing the necessary evidence to calibrate flood warning models.

15.2 Asset maintenance recommendations

Asset inspections have suggested that the defences would benefit from additional inspections and maintenance of the watercourse and defences. In particular, many outfalls are present which need to be inspected and flap valves fitted. Some of the smaller watercourses could benefit from intermittent vegetation and sediment management.

As part of this assessment CCTV of key culverts was undertaken within Dalbeattie. This found that some culverts were blocked and in need of clearance. Major blockages should be removed as a priority. We recommend monitoring of the condition is undertaken more frequently and a repair and inspection and cleaning maintenance schedule is established.

Condition survey of the flood defence assets shows that these are in a good condition. The wall/embankment on the edge of Colliston Park (Asset 7) is in poor condition and modelling suggests that this is the asset that would be exceeded (overtopped) first during a significant flood (in excess of a 200 year flood). It is recommended that remedial work is undertaken to locally raise this defence.

15.3 Options appraisal

A number of flood mitigation options have been considered including; property level protection and new direct defences on the Edingham Burn. A number of short term quick wins and longer term flood mitigation measures have been recommended.

All options assessed are economically viable with benefit-cost ratios greater than 2 for all options. The PLP option has the highest benefit-cost ratio although the two structural options are both cost effective with BCRs greater than 2. Option 1 is therefore preferred but all of the options assessed could be developed in the longer term. The use of Option 1 as a short term method, perhaps progressed using the Council's subsidy scheme would be beneficial.

Figures Section

2015s2898 - Dalbeattie Flood Study - Final Report v2.0.docx

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number 100016994.

- Culvert

- Bridge

- Wall

- Embankment
- **Channel Improvement**

29 - Embankment
 29* (Continued) - Culvert
 31 - Culvert
 33 - Embankment
34 - Embankment / Raised
ground

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number 100016994.

ASSET LOCATIONS AND ASSET REFERENCE NUMBERS FOR KIRKGUNZEON

CULVERT LOCATIONS AND SURVEY FOR CULVERT 10

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2016. Ordnance Survey Licence number 100016994.

Aproximate culvert location

LEGEND

AL

ath

Bar H

Surveyed culverts

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2016. Ordnance Survey Licence number 100016994.

Aproximate culvert location

Surveyed culverts

LEGEND

CULVERT LOCATIONS AND SURVEY FOR CULVERT 10

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown Copyright and database right 2016. Ordnance Survey Licence number 100016994.

Aproximate culvert location

Surveyed culverts

LEGEND

Standard of Protection

2	
Ę	
1	

2 year (3 properties) 50 year (6 properties) 100 year (7 properties)

200 year (71 properties)

1000 year (410 properties)

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number

STANDARD OF PROTECTION FOR **PROPERTIES AT RISK IN** DALBEATTIE

Note: A 100 year SOP suggests that properties would not flood at the 100 year flood, but would be at risk from a 200 year flood.

Standard of Protection

2	
5	
1	
2	
1	

2 year (3 properties) 50 year (5 properties)

100 year (7 properties)

200 year (70 properties)

1000 year (182 properties)

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number

Auchenfiddich

STANDARD OF PROTECTION FOR **PROPERTIES AT RISK IN** DALBEATTIE Note: A 100 year SOP suggests that properties would not flood at the 100 year flood, but would be at risk from a 200 year flood.

SOP1

50 (3 properties)

200 (5 properties)

1000 (8 properties)

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number

STANDARD OF PROTECTION FOR PROPERTIES AT RISK IN KIRKGUNZEON Note: A 100 year SOP suggests that properties would not flood at the 100 year flood, but would be at risk from a 200 year flood.

Depth (m)		
	0.00 - 0.25	
	0.25 - 0.50	
	0.50 - 0.75	
	0.75 - 1.00	
	1.00 - 1.25	
	1.25 - 1.50	
	1.50 - 1.75	

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number 100016994.

FLOOD DEPTH MAP FOR THE 200 YEAR FLOOD EVENT IN KIRKGUNZEON

LEGEND

200yr Fluvial Extents 200yr Fluvial with 200 year Tidal

0.00 - 0.25
0.25 - 0.50
0.50 - 0.75
0.75 - 1.00
1.00 - 1.25
1.25 - 1.50
1.50 - 1.75
1.75 - 2.00
2.00 - 2.25
2.25 - 2.50
2.50 - 3.00
3.00 - 3.25

Contains Ordnance Survey data © Crown copyright and database right 2015 OS MasterMap licence number 100016994.

COMPARISON OF FLUVIAL AND COASTAL FLOOD EXTENTS (COASTAL - 200YR WITH FLUVIAL 200 YR)

Legend

Approximate culvert location

200 year pluvial flood - 1 hour Depth (m)

0.05 - 0.25
0.25 - 0.50
0.50 - 0.75
0.75 - 1.00
1.00 - 1.25
1.25 - 2.00
2.00 - 5.00

Contains Ordnance Survey data copyright (c) crown copyright and database right 2015. All rights reserved. Licence number 100016994

SURFACE WATER FLOOD DEPTH MAP FOR THE 200 YEAR 1 HOUR DURATION STORM

Culverts requiring flap valves

Contains Ordnance Survey data © Crown copyright and database right 2015 OS MasterMap licence number 100016994.

RECOMMENDATIONS AND QUICK WINS FOR DALBEATTIE

Appendices

A Appendix A - Flood Estimation

A.1 Introduction

This section provides further details on the estimation of flows using the FEH.

A.2 Additional checks on catchment characteristics and choice of method

Although the FEH CD-ROM BFIHOST values appeared reasonable in comparison to the available geological information¹³, the BFI Scotland map¹⁴ suggested a BFI value of 0.27 for the Kirgunzeon Lane at Dalbeattie. This value is much smaller than the BFIHOST value of circa 0.476 derived from the FEH CD-ROM. The BFI Scotland map also suggested BFI values of 0.27 for all of the other subcatchments apart from the Drumjohn Burn where a value of 0.24 was identified (in comparison to the FEH CD-ROM value of 0.358). Interestingly, the map indicated a similar BFI value (0.35) for the Urr Water at Dalbeattie in comparison to the FEH CD-ROM value of 0.376.

The choice of BFI (and SPR) value was investigated using a BFI value of 0.27 and SPR value of 57.16¹⁵ for all of the watercourses (except Drumjohn Burn where a BFI value of 0.24 and SPR value of 58.48) was used to generate an alternative set of peak flows for both watercourses using the FEH Statistical method. From Table C-1 and Table C-2, it can be seen that the flows are much higher than those derived from the unadjusted datasets (for example, the 0.5% AP, 200 year, flow is estimated to be 88 m³/s for the Kirgunzeon Lane at Dalbeattie before BFI and SPR adjustment and circa 141 m³/s after adjustment). When input to the hydraulic model, the higher flows generated a frequency of flooding which was inconsistent with the flood history (i.e. flooding was estimated to occur too frequently). The default BFI and SPR values from the FEH CD-ROM were therefore retained and the resulting flows used within the hydraulic model.

With respect to choice of approach for estimating flood flows, the FEH Statistical method was judged to be the most appropriate method given the rural nature of the catchments and the availability of the nearby Urr Water at Dalbeattie as a potential donor site, the Statistical method was therefore assumed to be the most reasonable approach for estimating flood flows for all of the watercourses near the site except the watercourse at Castle Cottage (see below). In order to provide consistency in flood estimation across the catchment, a single pooling group was used for all of the Kirgunzeon Lane subcatchments (i.e. at Dalbeattie, Corra Bridge, upstream of Drumjohn Burn and Drumjohn Burn). A different pooling was used for Edingham Burn because of the smaller catchment size (4.41 km²). In each case, the Urr Water at Dalbeattie was used as a donor site for QMED estimation and the Generalised Logistic distribution was used to fit the growth curve.

The tributary of the Edingham Burn at Castle Cottage has a fairly small catchment area (0.65 km²). The gauging station data available for pooling in the FEH Statistical method generally have larger catchment areas than this and the FEH Statistical method was therefore deemed unsuitable for this particular catchment. Instead, both the FEH Rainfall Runoff method and ReFH2 were tested as alternative approaches (Table C-3). ReFH2 was found to produce flood estimates which were much smaller than those generated using the FEH Rainfall Runoff method. For example, the 0.5% AP (200 year) event was estimated to be 1.2 m³/s using ReFH2 and 2.9 m³/s using the FEH Rainfall Runoff method. Closer investigation revealed that ReFH2 used a larger time to peak (Tp) value of 2.52 h than the 1.18 h used by the FEH Rainfall-Runoff method and consequently generated much smaller flood flows. Given the small catchment area, the Tp value associated with the FEH Rainfall Runoff method was deemed to be more realistic for this catchment and this method was selected for use.

¹³ http://mapapps.bgs.ac.uk/geologyofbritain/home.html

¹⁴ Institute of Hydrology (1986), Base Flow Index Scotland map.

¹⁵ Per FEH Volume 3, equation 13.25.

Table C-1: FEH Statistical Estimates without BFI and SPR adjustments

Annual Probability (AP)	Return period (years)	Kirgunzeon Lane at Dalbeattie (m³/s)	Kirgunzeon Lane at Corra Bridge (m ³ /s)	Kirgunzeon Lane U/S of Drumjohn Burn (m ³ /s)	Drumjohn Burn (m³/s)	Edingham Burn (m³/s)	Castle Cottage (m ³ /s)
50	2	35.9	17.8	8.0	11.6	2.6	0.8
20	5	45.0	22.4	10.0	14.5	3.6	1.1
10	10	51.6	25.6	11.5	16.7	4.3	1.4
4	25	61.0	29.9	13.6	19.7	5.5	1.6
3.33	30	63.0	31.3	14.0	20.3	5.7	1.7
2	50	69.0	34.2	15.3	22.3	6.5	2.1
1.33	75	74.1	36.8	16.5	23.9	7.2	2.3
1	100	77.9	38.7	17.3	25.2	7.7	2.5
0.5	200	88.1	43.7	19.6	28.4	9.1	2.9
0.5 + 20% CC	200 + CC	105.7	52.5	23.5	34.1	10.9	3.5
0.2	500	103.6	51.4	23.0	33.4	11.3	3.6
0.1	1000	117.2	58.1	26.1	37.8	13.4	4.3

Table C 2. EEU	Statiation	Entimotoo	with DEI	and CDD	odiuotmonto
	Statistical	LSumales		anu or n	aujusimeniis

Annual Probability (AP)	Return period (years)	Kirgunzeon Lane at Dalbeattie (m ³ /s)	Kirgunzeon Lane at Corra Bridge (m ³ /s)	Kirgunzeon Lane U/S of Drumjohn Burn (m ³ /s)	Drumjohn Burn (m³/s)	Edingham Burn (m³/s)	Castle Cottage (m ³ /s)
50	2	57.3	29.2	16.6	14.6	3.5	0.9
20	5	72.0	36.7	20.9	18.3	4.8	1.3
10	10	82.5	42.1	23.9	21.0	5.9	1.5
4	25	97.5	49.2	28.2	24.8	7.4	1.9
3.33	30	100.7	51.3	29.2	25.6	7.7	2.0
2	50	110.3	56.2	31.9	28.1	8.8	2.3
1.33	75	118.4	60.4	34.3	30.1	9.7	2.5
1	100	124.6	63.5	36.1	31.7	10.4	2.7
0.5	200	140.8	71.8	40.8	35.8	12.3	3.2
0.5 + 20%	200 +	169.0	86.1	48.9	43.0	14.7	3.8
CC	CC						
0.2	500	165.6	84.4	48.0	42.1	15.3	3.9
0.1	1000	187.3	95.5	54.2	47.6	18.1	4.7

Table C-3: Comparison of Rainfall Runoff methods for Castle Cottage

Annual Probability (AP)	Return period (years)	ReFH2 (m³/s)	FEH Rainfall Runoff (m³/s)
50	2	0.4	0.8
20	5	0.5	1.1
10	10	0.6	1.4
4	25	0.7	1.6
3.33	30	0.7	1.7
2	50	0.9	2.1
1.33	75	0.9	2.3
1	100	1.0	2.5
0.5	200	1.2	2.9
0.5 + 20% CC	200 + 20% CC	1.5	3.5
0.2	500	1.6	3.6
0.1	1000	1.9	4.3

The following provides additional information on the FEH Statistical method used. Note that, as the same pooling group was used for the Kirgunzeon Lane at Dalbeattie, Corra Bridge, upstream of Drumjohn Burn and at Drumjohn Burn, this information is only shown once.

FE	FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET							
			-					
Site	Kirgunzeon Lane at tidal limit (downstream of Dalbeattie)							
NGR	NX 8210 6100							
Type of	Peak flows for FPS appraisal							
problem/objective of								
Type of catchment	Rural							
QMED site cd	61.6	m³/s						
	Donor/ Analogue	Sites Considered						
Site name	Urr at Dalbeattie							
Station number	80001							
NGR	NX 8210 6100							
Proximity (km)	2.00							
Adjustment	0.9312							
Site Chosen	Y							
QMED _{site} adjusted by	35.0	Specific O (I/s/ba)	37					
data transfer (m ³ /s)	55.9		5.7					
Q ₁₀₀ growth curve factor	2.17							
Q_{100} (m ³ /s)	77.9	Q100/ area (l/s/na)	8.1					
Summary Data								
FEH catchment area	94	1.99	km ²					
Adjusted catchment area	96	5.01	km ²					
URBEXT 1990	0.0	006						
URBEXT 2010	0.0	007						
URBEXT Adjustment	L Irbo	**2000						
Method	Unde.	XI2000						
SAAR	12	258						
Method Used	FEH Statis	tical Method						
Variation from Chosen								
Method								
Index Used	BFI	HOST						
QMED	35	5.86	m³/s					
5	45	5.05	m³/s					
10	51	.62	m ³ /s					
30	61	.00	m³/s					
50	68	3.98	m ³ /s					
75	74	.09	m ³ /s					
100	77	.95	m ³ /s					
200	88	3.08	m ³ /s					
4000	δö.Uö m³/s 147.10 3.							
1000 Climata Changa Bagian	South M/o	vet Sectland	m'/s					
Climate change Region	50001-778							
adjustment	20	.0%						
	10	5.7	m ³ /s					
Donor/ Analogues Used		Urr at Dalbeattie						
Calcs by:	David Cameron	Date:	06/08/2015					
Checked by:	Angus Pettit Date: 19/10/201							

JBA

		POOLING GR	OUP DETAILS											
Onininal Default Dealing Occurs							Defe	uk Daaliaa Oasan Oatahmaat Daara						
Original Default Pooling Group	Distance	Voore of data		LCV	L.SKEW	Discordoney	Deta	uit Pooling Group Catchment Descr	Dictore SDM		SVVD	CDEVT	EVDI	LIDDEVT 2000
203028 (Anivey @ Whitehill)	0.345		64.444	0 154	0.230	0.552	1 203	01 128 (Δαίνον @ Whitehill)	0.345	100 330	1270.000	0.003	0 000	0.003
203039 (Cloth @ Tullynewey)	0.043	-10	37 453	0.154	-0.055	1 983	2 2030	139 (Clonh @ Tullynewey)	0.043	98 370	1296.000	0.033	0.000	0.003
73008 (Rela @ Reetham)	0.423	43	36 936	0.000	0.000	0.199	3 730	18 (Rela @ Reetham)	0.423	127 450	1294 000	0.014	0.000	0.001
203033 (Unner Bann @ Bannfield)	0.100	37	67 053	0.100	0.001	0.100	4 2030	133 (Linner Bann @ Bannfield)	0.100	101 640	1261.000	0.062	0.002	0.010
48003 (Fal @ Trenony)	0.505	49	11 038	0.120	0.001	0.318	5 4800	13 (Fal @ Tregony)	0.505	89.030	1211 000	0.066	0.001	0.001
203043 (Onnawater @ Shanmov)	0.563	26	30.461	0.169	0.059	0.421	6 2030	143 (Onnawater @ Shanmov)	0.563	88 590	1003.000	0.078	0.000	0.002
48012 (Fal @ Trenowth)	0.633	15	10 210	0.138	0.357	2 730	7 480	12 (Fal @ Trenowth)	0.633	67 870	1243 000	0.071	0.979	0.002
205008 (Lagan @ Drumiller)	0.650	38	28 775	0.156	-0.073	1 033	8 205(008 (Lagan @ Drumiller)	0.650	84 980	1016 000	0.069	0.992	0.010
205005 (Ravernet @ Ravernet)	0.659	40	14 355	0.100	0.070	1.000	9 2050	005 (Ravernet @ Ravernet)	0.659	73 530	947 000	0.000	0.002	0.000
96003 (Strathy @ Strathy Bridge)	0.665	21	50 021	0.192	0.000	0.335	10 9600	13 (Strathy @ Strathy Bridge)	0.665	120 870	1090.000	0.074	0.895	0.000
78004 (Kinnel Water @ Redhall)	0.732	40	78 224	0.118	0.011	0.438	11 7800	14 (Kinnel Water @ Redhall)	0.732	76 170	1466 000	0.060	0.999	0.000
203019 (Claudy @ Glenone Bridge)	0.734	41	34.081	0.128	0.269	0.854	12 2030)19 (Claudy @ Glenone Bridge)	0.734	126.360	1131.000	0.152	0.992	0.004
52004 (Isle @ Ashford Mill)	0.735	50	34,188	0.227	0.016	2.675	13 5200)4 (Isle @ Ashford Mill)	0.735	87.41	891	0.084	0.979	0.026
206001 (Clanrye @ Mountmill Bridge)	0.764	36	20.208	0.145	0.126	0.277	14 2060	001 (Clanrye @ Mountmill Bridge)	0.764	120.540	975.000	0.064	0.972	0.004
Total		507												
Final Pooling Group							Fina	I Pooling Group						
Station	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	State	on DOD (A singu @ M/bitshill)	Distance SDM	AREA	SAAR	FPEXI 0.000	FARL	URBEXT 2000
203028 (Agivey @ Whitehili) 20009 (Data @ Daathaari)	0.345	40	04.444	0.104	0.230	0.489	2030	J28 (Agivey @ Winiteniii)	0.345	100.330	12/0.000	0.093	0.999	0.003
73008 (Bela @ Beemam)	0.438	43	30.930	0.100	0.158	0.7/5	7300	J8 (Bela @ Beetham)	0.438	127.450	1294.000	0.093	0.952	0.010
203033 (Upper Bann @ Bannied)	0.502	3/	07.053	0.120	0.001	0.724	2030	033 (Upper Bann @ Bannield)	0.502	101.640	1201.000	0.002	0.951	0.001
40003 (Fall @ Tregolity) 202042 (Consultation @ Shanmau)	0.505	49	20.464	0.102	0.271	0.220	4000	03 (Fall @ Tregoliy) 042 (Concurstor @ Shanmau)	0.500	09.030	1211.000	0.000	0.903	0.017
203043 (Ouriawater @ Snarinoy)	0.003	20	30.401	0.109	0.009	0.409	2030	045 (OURAWALER & SRAIIIIOY)	0.003	67.070	1005.000	0.074	0.974	0.002
40012 (Fdi @ Henowil) 205008 /Lease @ Drumiller)	0.033	10	10.210	0.150	0.30/	2.702	400	12 (Fall @ Henowill)	0.055	01.010	1245.000	0.0/1	0.9/9	0.019
205006 (Layan @ Drunnier) 205005 (Poyorost @ Poyorost)	0.000	30	20.113	0.130	-0.073	1.297	2000	006 (Layan @ Drunnier) 005 (Douoroot @ Douoroot)	0.000	72 520	047.000	0.009	0.992	0.001
200000 (Navernet @ Navernet) 06003 (Strathy @ Strathy Bridge)	0.009	40	50.021	0.210	0.330	0.501	2000	100 (Navernet @ Navernet) 13 (Strathy @ Strathy Bridge)	0.009	120 870	1000 000	0.107	0.934	0.000
78004 (Kinnel Water @ Redhall)	0.005	40	78 224	0.132	0.230	1 110	7800	M (Kinnel Water @ Pedhall)	0.003	76 170	1/66 000	0.060	0.035	0.000
203019 (Claudy @ Glanona Bridge)	0.734	41	34.081	0.110	0.011	1.624	2030	19 (Claudy @ Glenone Bridge)	0.734	126 360	1131 000	0.000	0.000	0.000
206001 (Clanrye @ Mountmill Bridge)	0.764	36	20 208	0.120	0.126	0.447	2060	01 (Clanrye @ Mountmill Bridge)	0.764	120.000	975.000	0.064	0.002	0.004
25006 (Greta @ Rutherford Bridge)	0.811	52	76 763	0.116	0.120	0.308	2500	6 (Greta @ Rutherford Bridge)	0.811	86 810	1127 000	0.042	0.012	0.001
79003 (Nith @ Hall Bridge)	0.902	55	70.779	0.203	0.457	2.086	7900	03 (Nith @ Hall Bridge)	0.902	155.760	1512.000	0.066	0.973	0.003
Total		533												
Weighted means				0.163	0.185									

		DER	IVING A POOLED GRO	WTH CURVE							
0.1					1						
Site Kirgunzeon Lane downstream of Dalbeattie √ Ungauged											
NGR	NGR NX 8300 6050 Gauged site										
			Attached Printo	uts							
	WINFAP-FEH s	tation details									
	WINFAP-FEH s	ummary inform	mation if gauged site								
			Initial Pooling Group	Details							
Name	Name p_hiflows_kirkgunzeon_default										
Site of inte	rest	Downstream	of Dalbeattie								
Return per	iod of interest	200 years									
Other infor	mation										
Version of	WIN-FAP FEH	Version 3.0									
Data Files		Other									
If 'Other' cl	hosen in Data										
Files enter	file path here	G:\FEH\FEH	CD_ROM and WINFA	\P\HiFlows-UK da	ata_v3.3.4_(Au	j 2014)					
		Adjustment/ (Changes made to De	fault Pooling Gr	oup.						
	Also note site	s that were inv	estigated but retained	in the group (i.e	e. for discordan	cy)					
				Addition/							
Stati	ion number		Name	<u>D</u> eletion/	R	eason					
				<u>M</u> ove/							
				<u>Investigate</u>							
	203039	<u>Clogh</u>	@ Tullynewey	D	Out of bank flows	below QMED					
	52004	Isle @	Ashford Mill	D	Bypassir	ig at high flows					
	25006	Greta @	Rutherford Bridge	A	Increase record	length after deletions					
	79003	Nith	@ Hall Bridge	A	Increase record le	ngth (D&G distance mea					
			Final Pooling Group	Details							
			Heterogeneity Mea	asure							
	H1		Poss	sibly Heterogene	ous						
	H2			Heterogeneous							
			Goodness of F	it							
Acc	eptable Fit			Distribution							
	\checkmark	ļ	Ge	eneralised Logisti	c						
			Gener	ralised Extreme \	/alue						
				Pearson Type iii							
			G	eneralised Parete	00						
			Growth Curve Fit	tings							
Attack	ned print outs	\checkmark	WINFAP-FEH growth	curve fittings							
Auder			WINFAP-FEH growth	curve							
Name of F	inal Pooling Grou	an		p hiflows kirke	unzeon v2						

FI	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHE	ET
0.4			
Site	Kirgunzeon Lane at Corra	Bridge	
	NX 8665 6600		
Type of	Peak flows for FPS appraisal		
problem/objective of			
Type of catchment	Rural		
QMED site of	31.3	m ³ /s	
	Donor/ Analogue	Sites Considered	
Site name	Urr at Dalbeattie		
Station number	80001		
NGR	NX 8210 6100		
Proximity (km)	2.00		
Adjustment	0.9331		
Site Chosen	Y		
QMED site adjusted by	17.0	Specific O (Uc/ba)	
data transfer (m ³ /s)	17.9	Specific Q (I/s/na)	4.4
Q ₁₀₀ growth curve factor	2.17		
$\Omega_{\rm exc}$ (m ³ /s)	39.0	Q100/ area (l/s/ha)	9.5
a ₁₀₀ (m73)	0010		
	Summa	ry Data	
FEH catchment area	40).69	km ²
Adjusted established area	/1	09	km ²
	41	000	KIII
URBEAT 1990	0.	000	
URDEAT 2010	0.1	001	
Method	Urbe	xt2000	
SAAR	1:	303	
Method Used	FEH Statis	tical Method	
Variation from Chosen			
Method			
Index Used	BEI	HOST	
	17	7 95	m ³ /c
	20		31
5	22		m [×] /s
10	20	0.83	m [×] /s
30	30).53	m³/s
50	34	1.52	m³/s
75	37	7.08	m³/s
100	39	9.01	m³/s
200	44	l.08	m ³ /s
1000	58	3.63	m³/s
Climate Change Region	South-We	est Scotland	·
Climate change		09/	
adjustment	20	.070	
200 + cc	5.	2.9	m ³ /s
Donor/ Analogues Used		Urr at Dalbeattie	
Calcs by:	David Cameron	Date:	06/08/2015
Checked by:	Angus Pettit	Date:	19/10/2015

F	FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET								
01									
Site	Kirgunzeon Lane upstream	n of Drumjohn Burn conflue	ence						
	NX 8/10 6/70								
Type of	Peak flows for FPS appraisal								
problem/objective of									
Type of catchment	Rural								
QMED alto ad	17.8	m ³ /s							
site ca									
	Donor/ Analogue	Sites Considered							
Site name	Urr at Dalbeattie								
Station number	80001								
NGR	NX 8210 6100								
Proximity (km)	2.00								
Adjustment	0.9331								
Site Chosen	Y								
QMED site adjusted by	<u>ه</u> ۸	Specific O (I/s/ba)	2 /						
data transfer (m ³ /s)	0.0	Specific Q (I/S/na)	3.4						
Q ₁₀₀ growth curve factor	2.17		7.0						
Q_{100} (m ³ /s)	17.3	Q100/ area (I/s/na)	7.3						
	Summa	ry Data							
FEH catchment area	23	3.52	km ²						
Adjusted catchment area	23	3.76	km ²						
URBEXT 1990	0,000								
URBEXT 2010	0.	001							
URBEXT Adjustment	Lirbo	v42000							
Method	UIDE	XI2000							
SAAR	12	284							
Method Used	FEH Statis	tical Method							
Variation from Chosen									
Method									
Index Used	BFII	HOST	-						
QMED	7.	.98	m³/s						
5	10).02	m³/s						
10	11	.48	m³/s						
30	14	1.02	m ³ /s						
50	15	5.35	m³/s						
75	16	5.48	m ³ /s						
100	17	7.34	m ³ /s						
200	19	9.60	m ³ /s						
1000	26	3.07	m ³ /s						
Climate Change Region	South-We	est Scotland	11175						
Climate change	Codar We								
adjustment	20	.0%							
200 + cc	2	3.5	m ³ /s						
Donor/ Analogues Used		Urr at Dalbeattie							
Oslas kur	David C	Data	04/0/0015						
CalCS DY:	David Cameron		24/9/0215						
Checked by:	Angus Pettit Date: 19/10/2015								

FEH STATISTICAL FLOOD ESTIMATION SUMMARY SHEET										
0:4-	Drumiohn Burn at Drumiohn Bridge									
Site	Drumjohn Burn at Drumjohn Bridge									
	NX 8730 6705									
rype of	Peak flows for FPS appraisal									
Type of catchment	Rural									
QMED site cd	15.6	m³/s								
	Donor/ Analogue	Sites Considered								
Site name	Urr at Dalbeattie									
Station number	80001									
NGR	NX 8210 6100									
Proximity (km)	2.00									
Adjustment	0.9348									
Site Chosen	Y									
QMED site adjusted by	44 7	Specific O (Veller)	0.0							
data transfer (m ³ /s)	11.7	Specific Q (I/s/na)	9.0							
Q ₁₀₀ growth curve factor	2.17									
$O(m^3/c)$	25.5	Q100/ area (l/s/ha)	19.6							
Q ₁₀₀ (m / 3)	25.5									
	Cummer Data									
	3011111a 10		1,0002							
FER catchment area	12	01								
Adjusted catchment area	13	5.02 000	km²							
	0.0	000								
URBEXT 2010	0.0	000								
Mothod	Urbe	xt2000								
SAAR	13	361								
Method Used	FFH Statis	tical Method								
Variation from Chasan	121104440									
Method										
Index Lised	BFI	HOST								
	11	73	m ³ /o							
	11	74	31							
5	14		m [*] /s							
10	16	0.89	m³/s							
30	19	0.96	m³/s							
50	22	2.57	m³/s							
75	24	.24	m³/s							
100	25	5.50	m ³ /s							
200	28	3.82	m ³ /s							
1000	38.33 m ³ /n									
Climate Change Region	South-We	st Scotland								
Climate change	00001 110									
adjustment	20	.0%								
200 + cc	34	4.6	m ³ /s							
Donor/ Analogues Used		Urr at Dalbeattie	,0							
		_								
Calcs by:	David Cameron	Date:	06/08/2015							
Checked by:	Angus Pettit	Date:	19/10/2015							

FE	EH STATISTICAL FLOOD ES	TIMATION SUMMARY SHE	ET				
Site	Edingham Burn upstream of Kirgunzeon Lane confluence						
NGR	NX 8355 6175						
Type of	Peak flows for FPS appraisal						
problem/objective of							
Type of catchment	Rural						
QMFD altered	2.8 m ³ /s						
She ca	2.0						
	Donor/ Analogue	Sites Considered					
Site name	Urr at Dalbeattie						
Station number	80001	80001					
NGR	NX 8210 6100						
Proximity (km)	2.00						
Adjustment	0.9317						
Site Chosen	Y						
QMED site adjusted by	26	Specific O (I/s/ba)	50				
data transfer (m ³ /s)	2.0		5.9				
Q ₁₀₀ growth curve factor	2.95	O(100) area ($1/a/ba$)	17.4				
Q ₁₀₀ (m ³ /s)	7.7	Q100/ area (I/s/na)	17.4				
	Summa	ry Data					
FEH catchment area	4.43 km ²						
Adjusted catchment area	4.41 km ²						
URBEXT 1990	0.003						
URBEXT 2010	0.	009					
URBEXT Adjustment	Lirbo	vt2000					
Method	UIDE						
SAAR	1'	144					
Method Used	FEH Statis	tical Method					
Variation from Chosen							
Method		10.07					
Index Used	BEII						
QMED	2.	m³/s					
5	3.	.58	m³/s				
10	4.	m³/s					
30	5.	m³/s					
50	6.	m³/s					
75	7.	.15	m³/s				
100	7.	.67	m³/s				
200	9.08 m ³ /s						
1000	13.41 m ³ /e						
Climate Change Region	South-We	est Scotland					
Climate change		00/					
adjustment	20	.0%					
200 + cc	10.9 m ³ /s						
Donor/ Analogues Used	Urr at Dalbeattie						
Calcs by:	David Cameron Date: 06/08/201						
Checked by:	Angus Pettit	Date: 19/10/2015					

Definition Design Versitie Control Design Design <thdesign< th=""> <thde< th=""><th></th><th></th><th>POOLING GR</th><th>OUP DETAILS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thde<></thdesign<>			POOLING GR	OUP DETAILS										
Dipol Data Part of all Color Loss of all Section of all all all all all all all all all al														
Contact Contact <t< th=""><th>Original Default Pooling Group</th><th>Distance</th><th>Verse of data</th><th></th><th>1.01/</th><th></th><th>Discontanto</th><th>Default Pooling Group Catchment Descrip</th><th>Distance CDM</th><th>40.54</th><th>0.440</th><th>FDEVE</th><th>EADI</th><th></th></t<>	Original Default Pooling Group	Distance	Verse of data		1.01/		Discontanto	Default Pooling Group Catchment Descrip	Distance CDM	40.54	0.440	FDEVE	EADI	
Bar Dip Carabit B (guil) Open Bar Dip Carabit B (guil) Open Control (Guil) Contro (Guil) Control (Guil) <thcontrol (<="" td=""><td>Station</td><td>Distance</td><td>Tears of data</td><td>QMED AM</td><td>0.224</td><td>L-SKEW</td><td>Discordancy</td><td>Station</td><td>Distance SDM</td><td>AREA</td><td>5AAR 4040.000</td><td>PPEXI 0.011</td><td>FARL</td><td>0.00E</td></thcontrol>	Station	Distance	Tears of data	QMED AM	0.224	L-SKEW	Discordancy	Station	Distance SDM	AREA	5AAR 4040.000	PPEXI 0.011	FARL	0.00E
Calco Look P TrainsLody II Loss J. Sol Loss J. Sol Loss J. Sol Loss J. Sol J. Sol Loss Loss J. Sol Sol Loss Loss J. Sol <	45616 (Haudeo @ Opton)	1.000	19	3.400	0.324	0.434	0.030	400 10 (Haudeo @ Opioli)	4.000	0.010	1210.000	0.007	1.000	0.000
Cubb (Ling Here Bundhord) 1.105 4.00 Cubb (Ling Here Bundhord) 1.405 K.100 Cubb (Ling Here Bundhord) VIC2 (Toy Book B Nenhran Pak) 1.53 1.53 1.55 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.50 1.55 1.50 1.50 1.55 1.50 1.50 1.50 1.50 <td< td=""><td>20033 (Dove @ Hollinschough)</td><td>1.009</td><td>33</td><td>4.000</td><td>0.200</td><td>0.410</td><td>0.401</td><td>20033 (Dove @ Hollinschough)</td><td>1.009</td><td>7.930</td><td>1340.000</td><td>0.007</td><td>1.000</td><td>0.000</td></td<>	20033 (Dove @ Hollinschough)	1.009	33	4.000	0.200	0.410	0.401	20033 (Dove @ Hollinschough)	1.009	7.930	1340.000	0.007	1.000	0.000
Hard Haz So Left Loss House Loss Loss <thloss< th=""> Loss <thloss< th=""> <t< td=""><td>27051 (Crimple @ Burn Bridge)</td><td>1.165</td><td>40</td><td>4.539</td><td>0.222</td><td>0.149</td><td>0.321</td><td>2/051 (Crimple @ Burn Bridge)</td><td>1.165</td><td>8.150</td><td>855.000</td><td>0.013</td><td>1.000</td><td>0.006</td></t<></thloss<></thloss<>	27051 (Crimple @ Burn Bridge)	1.165	40	4.539	0.222	0.149	0.321	2/051 (Crimple @ Burn Bridge)	1.165	8.150	855.000	0.013	1.000	0.006
Vitac Log Park Remark Park Tubel T	76011 (Coal Burn @ Coalburn)	1.402	30	1.840	0.169	0.333	0.952	76011 (Coal Burn @ Coalburn)	1.462	1.630	1096.000	0.074	1.000	0.000
Baske (Lamber & Camberloy) Tobel C Color Color <thcolor< th=""> <thcolor< th=""> <thcolor< t<="" td=""><td>4/022 (Tory Brook @ Newnam Park)</td><td>1.634</td><td>19</td><td>7.331</td><td>0.257</td><td>0.0/1</td><td>0.607</td><td>4/UZ2 (Tory Brook @ Newnham Park)</td><td>1.634</td><td>13.450</td><td>1403.000</td><td>0.023</td><td>0.942</td><td>0.014</td></thcolor<></thcolor<></thcolor<>	4/022 (Tory Brook @ Newnam Park)	1.634	19	7.331	0.257	0.0/1	0.607	4/UZ2 (Tory Brook @ Newnham Park)	1.634	13.450	1403.000	0.023	0.942	0.014
Carry Langton Lib/ 25 Lib/ Lib/ <thlib <="" th=""> Lib/ Lib/</thlib>	49006 (Camel @ Camelrord)	1.649	6	8.832	0.110	-0.293	3.459	49006 (Camel @ Camelrord)	1.649	12.860	1418.000	0.012	1.000	0.004
CAUSI (Inclusive) Tubel 1.880 38 Tubel 1.01% 0.227 1.028 2.0003 (Inclusive) 1.147 1.500 1.000 0.000 20200 Fundancy B Recorder) 1.001 4.46 5.530 0.153 0.557 1.044 1.9500 1.940 1.854 0.757 0.024 0.980 0.000 20200 Fundancy B Recorder) 1.884 37 1.531 0.155 0.188 1.957 0.2000 1.980 1.880 1.500 0.000 0.000 20210 Funder Rec B Kitry Crintalythe 1.888 34 5.538 0.347 0.238 0.247 2019 Funder Name (Normal Symmetry Conducting) 1.000 0.000 20210 Funder Name B Kitry Crintalythe 1.884 0.328 0.328 0.328 1.512 4.008 (South Winterbourne BW (Normal Symmetry Conducting) 1.000 0.000 0.000 20204 Finathwere Burn @ Rathmore Burd 2.316 2.316 2.216 2.216 2.216 2.216 2.216 2.216 2.216 2.21	25011 (Langdon Beck @ Langdon)	1.657	26	15.8/8	0.241	0.326	1.368	25011 (Langdon Beck @ Langdon)	1.657	12.790	1463.000	0.013	1.000	0.001
Pilsoz (AH Lackschach (# Intake)) 1/47 54 6.530 0.153 0.157 1/164 9/982 (AH Lackschach (# Intake)) 1/47 6.500 55.000 0.003 0.982 0.000 5402 (Seene P Pynimor Fune) 1.841 3.801 1.550 0.168 1.199 5402 (Seene P Pynimor Fune) 1.841 8.869 243.000 0.010 1.000 0.000 2019 (Leven @ Exoty) 1.889 34 5.538 0.347 0.334 0.172 22019 (Leven @ Exoty) 1.889 15.07 83.000 0.019 1.000 0.000 2010 (Flocippe Exit @ Branstake Werl 2.130 1.840 987.000 0.038 1.00 0.011 4008 (Sun Winterbourne @ Winterbour 2.101 1.840 987.000 0.038 0.076 1.000 0.000 1.000 0.001 4.003 0.568 2.0346 (Fathmore Bure @ West Luccomth 2.211 1.840 987.00 0.033 0.678 0.000 20284 (Fathmore Bure @ West Luccomthe 2.216 0.164 0.426 1.000 0.003	25003 (Trout Beck @ Moor House)	1.690	39	15.164	0.1/6	0.291	0.583	25003 (Trout Beck @ Moor House)	1.690	11.460	1904.000	0.041	1.000	0.000
DBROB (Arrange @ Recorder) 1.801 1.824 J. 300 0.014 0.880 0.000 2000 (Arrange @ Recorder) 1.881 J. 3240 J. 3240 0.024 0.890 0.000 2019 (Leven @ Easty) 1.884 J. 1001 0.001 0.000 0.000 0.000 2019 (Leven @ Easty) 1.889 1.5 0.19 0.223 2019 (Leven @ Easty) 1.889 15.07 0.33 1 0 2020 (Lyborge Race & Bransdal Wein) 2.201 1.389 1.400 2.000 0.001 1.000 0.001 44008 (South Winshoure @ Winshoure @ Winshoure @ Winshoure @ Weat Lucornbe 2.271 31 8.354 0.382 0.382 1.502 44008 (Rathmore Bur @ Weat Lucornbe 2.211 0.300 0.075 1.000 0.001 1020 (Hyber Back & Bransdal Wein) 2.316 3.10.34 0.156 0.029 0.568 2.0346 (Rathmore Bur @ Weat Lucornbe 2.211 0.300 0.33 0.040 0.033 0.476 0.000 0.033 0.040 0.033 0.476 0.000 <td>91802 (Allt Leachdach @ Intake)</td> <td>1.747</td> <td>34</td> <td>6.350</td> <td>0.153</td> <td>0.257</td> <td>1.084</td> <td>91802 (Allt Leachdach @ Intake)</td> <td>1.747</td> <td>6.520</td> <td>2555.000</td> <td>0.003</td> <td>0.992</td> <td>0.000</td>	91802 (Allt Leachdach @ Intake)	1.747	34	6.350	0.153	0.257	1.084	91802 (Allt Leachdach @ Intake)	1.747	6.520	2555.000	0.003	0.992	0.000
Statiz General Printinon Fume 1.854 3.860 2.8000 0.010 1.000 0.000 2050 Jeaner B Statis 3.77 0.394 0.723 25014 (Lener) E Statis) 1.889 4.860 2.8000 0.010 1.000 0.004 2050 Jeanstate Viering 2.130 4.41 9.420 0.234 0.124 27010 (Honge Beax & Branskie Viering 2.130 1.844 967.000 0.008 1.000 0.004 0.0204 (Bourn Vinterhoure B Winterburce M 2.021 3.0 0.023 0.124 27010 (Honge Beax & Branskie Weir) 2.130 1.844 967.000 0.035 1.070 0.000 0.0204 (Homer Ware @ West Luccombe 2.271 31 8.354 0.382 0.382 1.472 51002 (Honer Ware @ West Luccombe 2.216 1.0400 0.033 0.978 0.0000 0.0204 (Fahrmer Bure @ Rathmore Bur 2.316 3.0466 0.324 0.444 0.246 2.316 2.2510 1.0400 0.033 1.000 0.000 1.000	206006 (Annalong @ Recorder)	1.801	48	15.330	0.189	0.052	1.634	206006 (Annalong @ Recorder)	1.801	13.660	1720.000	0.024	0.980	0.000
23019 (Leven @ Eashy) 1.889 15.00 0.487 0.394 0.723 22019 (Leven @ Eashy) 1.889 15.00 0.000 0.009 1.000 0.001 2010 (Hodge Beck @ Bransdale Weir) 2130 44 9.420 0.224 0.223 0.124 27010 (Hodge Beck @ Bransdale Weir) 2.130 18.840 987.000 0.099 1.000 0.001 2020 (Hodge Beck @ Bransdale Weir) 2.130 44 9.420 0.234 0.232 1.502 44008 (South Winnehoume @ Win	54022 (Severn @ Plynlimon Flume)	1.854	37	15.031	0.155	0.168	1.199	54022 (Severn @ Plynlimon Flume)	1.854	8.690	2483.000	0.010	1.000	0.000
Base Coper, Race B (htty Grindayhine 1986 13 0.100 0.241 0.242 0.233 0.141 22002 (Dops geace B kinty Grindayhine 1.8840 92000 0.000 0.000 44008 (South Wintertourne B Wintertourne	25019 (Leven @ Easby)	1.889	34	5.538	0.347	0.394	0.723	25019 (Leven @ Easby)	1.889	15.070	830.000	0.019	1.000	0.004
Call (Hodge Back, B) Bransdak Wer) 2.130 41 9.200 0.224 0.238 0.124 2270 (Hodge Back, B) Bransdak Wer) 2.130 18.840 987.00 0.009 1.000 0.001 Voll (Such Winterbourue B) Winterbouru 2.201 31 0.420 0.382 1.552 4008 (Such Winterboure B) Winterbourue B) 2.217 20.300 (Homer Water @ West Luccomb 2.217 20.300 (Homer Water @ West Luccomb 2.216 1043.00 0.003 0.000 20304 (Rathmore Burn @ Rathmore Bird 2.316 30 10.934 0.136 0.001 0.004 0.000 20304 (Rathmore Burn @ Rathmore Bird 2.316 30 10.934 0.136 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000	26802 (Gypsey Race @ Kirby Grindalythe	1.996	13	0.109	0.261	0.199	0.417	26802 (Gypsey Race @ Kirby Grindalyt	1.996	15.85	757	0.03	1	0
Hallo Source Withinsbourne Withinsbo	27010 (Hodge Beck @ Bransdale Weir)	2.130	41	9.420	0.224	0.293	0.124	27010 (Hodge Beck @ Bransdale Weir)	2.130	18.840	987.000	0.009	1.000	0.001
Elito: Prote: Station Distance SUM AHEA SARE PERIL Control Control <thcontrol< th=""> <thcontrol< th=""> <thcontro< td=""><td>44008 (South Winterbourne @ Winterbou</td><td>2.202</td><td>33</td><td>0.420</td><td>0.395</td><td>0.332</td><td>1.502</td><td>44008 (South Winterbourne @ Winterbo</td><td>2.202</td><td>20.170</td><td>1012.000</td><td>0.015</td><td>1.000</td><td>0.004</td></thcontro<></thcontrol<></thcontrol<>	44008 (South Winterbourne @ Winterbou	2.202	33	0.420	0.395	0.332	1.502	44008 (South Winterbourne @ Winterbo	2.202	20.170	1012.000	0.015	1.000	0.004
Distance Bum Beathmore Bum 2.316 2.316 3.0 1.0.33 0.0.36 2.0046 (Rathmore Bum @ Rathmore Bit 2.316 2.2.16 2.2.16 2.2.16 2.2.16 2.2.16 0.0.000 0.0.000 Total 5.518 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246 0.238 0.246	51002 (Horner Water @ West Luccombe)	2.271	31	8.354	0.382	0.326	1.472	51002 (Horner Water @ West Luccomb	2.271	20.380	1485.000	0.003	0.978	0.000
Total Image: State in the stat	203046 (Rathmore Burn @ Rathmore Brid	2.316	30	10.934	0.136	0.091	0.568	203046 (Rathmore Burn @ Rathmore Br	2.316	22.510	1043.000	0.073	1.000	0.000
Total Image: Stall in the stal														
Weighed means Image: Normal Status N	Total		518											
Final Pooling Group	Weighted means				0.238	0.246								
Final Pooling Group Inc. Inc. </td <td></td>														
Final Pooling Group Distance Verse of data OMED AM L-SKE W Discondancy Station Distance SDM AREA SAMR FIRAL 2001 Station Distance SDM 1.485 0.4451 0.4554 0.4544 0.641 4.5561 (Haddice Q Upton) 0.845 6.6310 121000 0.011 1.000 0.001 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Final Pooling Group Internation Distance Years of data OMED Lev. Lev. Lev. Distance Station Distance SDM AREA SAMR FPEXT FARL URBEXT 2000 58116 (Haddes @ Upton) 0.845 19 3.456 0.324 0.434 0.641 45816 (Haddes @ Upton) 0.845 68.10 120.000 0.011 1.000 0.000 28033 (Doce @ Hollinsclough) 1.068 3.33 4.666 0.262 0.145 0.237 227051 (Cirnipe @ Burn Bridge) 1.165 81.50 85.000 0.013 1.000 0.000 72015 (Cirnipe @ Burn Bridge) 1.165 40 0.169 0.333 0.910 76011 (Coal Burn @ Coaburn) 1.462 1.650 140.000 0.023 0.942 0.014 7202 (Tory Brook @ Newnham Park) 1.649 6 8.832 0.110 -0.293 3.243 49006 (Camel @ Camelford) 1.649 16.400.000 0.041 1.000 0.000 2.000 2.0000 2.0000 2.0000 2.0000 0														
Station Distance Years of data QMED AM L-CV L-SKEW Discondancy 45816 (Haddeo @ Lpton) 0.845 19 3.456 0.224 0.434 0.641 45316 (Haddeo @ Lpton) 0.845 6.810 1210.000 0.011 1.000 0.005 28033 (Dove @ Hollinsclough) 1.069 33 4.666 0.226 0.149 0.237 27051 (Crimple @ Bum Bridge) 1.165 8.5000 0.071 1.000 0.000 7051 (Crimple @ Bum Bridge) 1.462 35 1.344 0.169 0.333 0.910 77011 (Coal Burn @ Coalburn) 1.462 1.650 85.000 0.071 1.000 0.000 47022 (Tory Brook @ Newnham Park) 1.634 1.99 7.331 0.257 0.071 0.714 47022 (Tory Brook @ Newnham Park) 1.643 1.4600 0.012 1.000 0.000 25001 (Langdon Beck @ Langdon) 1.657 2.66 1.682 0.013 1.000 0.001 25003 (Toru Beck @ Langdon) 1.657 2.61 5.878 0.241	Final Pooling Group							Final Pooling Group						
45816 (Haddeo @ Upton) 0.845 19 3.456 0.324 0.434 0.641 45816 (Haddeo @ Upton) 0.845 6.810 1210.000 0.011 1.000 0.005 22033 (Dove @ Holinsclugh) 1.069 33 4.666 0.266 0.415 0.395 22033 (Dove @ Holinsclugh) 1.069 7.930 1346.000 0.007 1.000 0.000 27051 (Crimple @ Burn Bridge) 1.165 40 4.539 0.222 0.149 0.237 27051 (Crimple @ Burn Bridge) 1.165 1.650 85.000 0.011 1.000 0.000 47012 (Carburne @ Caburn) 1.462 1.531 1.99 7.331 0.257 0.071 0.714 47022 (Tory Brook @ Newnham Park) 1.654 13.450 1403.000 0.023 0.942 0.014 49006 (Camel @ Camelford) 1.649 1.657 2.66 1.637 0.279 1463.00 0.012 1.000 0.001 25003 (Trout Beck @ Moor House) 1.657 2.56 0.031 1.000 0.000 2.500 0.003 </th <th>Station</th> <th>Distance</th> <th>Years of data</th> <th>QMED AM</th> <th>L-CV</th> <th>L-SKEW</th> <th>Discordancy</th> <th>Station</th> <th>Distance SDM</th> <th>AREA</th> <th>SAAR</th> <th>FPEXT</th> <th>FARL</th> <th>URBEXT 2000</th>	Station	Distance	Years of data	QMED AM	L-CV	L-SKEW	Discordancy	Station	Distance SDM	AREA	SAAR	FPEXT	FARL	URBEXT 2000
28033 (Dove @ Hollinschugh) 1.069 33 4.666 0.266 0.415 0.395 28033 (Dove @ Hollinschugh) 1.068 7.930 1346.000 0.007 1.000 0.000 27051 (Crimple @ Burn Bridge) 1.165 4.0 4.539 0.222 0.149 0.237 27051 (Crimple @ Burn Bridge) 1.165 8.150 855.000 0.071 1.000 0.000 70011 (Cal Burn @ Cablurn) 1.462 3.53 1.840 0.169 0.33 0.910 70011 (Cal Burn @ Cablurn) 1.462 1.650 0.074 1.000 0.000 9006 (Carrell @ Camelford) 1.644 6 8.32 0.110 -0.228 .243 49006 (Carrell @ Camelford) 1.645 1.4800 0.013 1.000 0.001 25001 (Langdon Beck @ Langdon) 1.657 12.790 1463.000 0.013 1.000 0.000 26003 (Trout Beck @ Moor House) 1.890 39 15.164 0.176 0.291 0.577 25003 (Trout Beck @ Langdon) 1.657 12.790 1463.000 0.014 <t< td=""><td>45816 (Haddeo @ Upton)</td><td>0.845</td><td>19</td><td>3.456</td><td>0.324</td><td>0.434</td><td>0.641</td><td>45816 (Haddeo @ Upton)</td><td>0.845</td><td>6.810</td><td>1210.000</td><td>0.011</td><td>1.000</td><td>0.005</td></t<>	45816 (Haddeo @ Upton)	0.845	19	3.456	0.324	0.434	0.641	45816 (Haddeo @ Upton)	0.845	6.810	1210.000	0.011	1.000	0.005
27051 (Crimple @ Burn Bridge) 1.165 40 4.539 0.222 0.149 0.237 27051 (Crimple @ Burn Bridge) 1.165 8.150 855.000 0.013 1.000 0.006 76011 (Coal Burn @ Coalburn) 1.462 35 1.440 0.169 0.333 0.910 76011 (Coal Burn @ Coalburn) 1.462 1.630 1056000 0.074 1.000 0.000 47022 (Tory Brook @ Newnham Park) 1.634 1.97 7.331 0.257 0.071 0.714 47022 (Tory Brook @ Newnham Park) 1.649 1.6480 142.000 0.023 0.942 0.044 9006 (Camel @ Camelford) 1.649 1.657 2.61 15.778 0.241 0.333 1.189 25003 (Trout Beck @ Langdon) 1.657 12.790 1463.000 0.012 1.000 0.000 25003 (Trout Beck @ Langdon) 1.657 1.577 0.257 1.171 91602 (AltLeachdach @ Intake) 1.747 6.520 2555.000 0.033 0.992 0.000 25002 (Storet @ Phynimon Fume) 1.854 15.30 0	28033 (Dove @ Hollinsclough)	1.069	33	4.666	0.266	0.415	0.395	28033 (Dove @ Hollinsclough)	1.069	7.930	1346.000	0.007	1.000	0.000
76011 (Coal Burn @ Coalburn) 1.462 35 1.840 0.169 0.333 0.910 76011 (Coal Burn @ Coalburn) 1.462 1.630 1096.000 0.074 1.000 0.000 47022 (Tory Brook @ Newnham Park) 1.634 19 7.331 0.257 0.071 0.714 47022 (Tory Brook @ Newnham Park) 1.634 13.460 1403000 0.023 0.942 0.014 49006 (Camel @ Camelford) 1.649 6 8.832 0.110 -0.293 3.243 49006 (Camel @ Camelford) 1.644 12.880 1418.000 0.012 1.000 0.004 25011 (Langdon Beck @ Langdon) 1.657 2.66 15.878 0.241 0.326 1.189 25011 (Langdon Beck @ Langdon) 1.657 12.790 148.000 0.013 1.000 0.000 91002 (Allt Leachdach @ Intake) 1.747 34 6.350 0.153 0.257 1.171 91802 (Allt Leachdach @ Intake) 1.747 6.520 2555.000 0.003 0.992 0.000 200000 (Anralang @ Recorder) 1.801 4	27051 (Crimple @ Burn Bridge)	1.165	40	4.539	0.222	0.149	0.237	27051 (Crimple @ Burn Bridge)	1.165	8.150	855.000	0.013	1.000	0.006
47022 (Tory Brook @ Newnham Park) 1.634 19 7.331 0.257 0.071 0.714 47022 (Tory Brook @ Newnham Park) 1.634 13.450 140300 0.023 0.942 0.014 49006 (Camel @ Camelford) 1.649 6 8.832 0.110 -0.293 3.243 49006 (Camel @ Camelford) 1.644 12.860 1418.000 0.012 1.000 0.004 25013 (Trout Beck @ Langdon) 1.657 2.6 15.878 0.241 0.326 1.789 25003 (Trout Beck @ Moor House) 1.6890 11.460 194.000 0.014 1.000 0.000 25003 (Trout Beck @ Inade) 1.747 34 6.550 0.153 0.257 1.171 91802 (Alt Leachdach @ Intake) 1.147 6.500 0.033 0.992 0.000 26006 (Annalong @ Recorder) 1.801 48 15.330 0.189 0.052 1.866 206006 (Annalong @ Recorder) 1.801 13.660 1720.000 0.024 0.980 0.000 25019 (Leven @ Easthy) 1.884 37 15.031	76011 (Coal Burn @ Coalburn)	1.462	35	1.840	0.169	0.333	0.910	76011 (Coal Burn @ Coalburn)	1.462	1.630	1096.000	0.074	1.000	0.000
49006 (Camel @ Camellord) 1.649 6 8.832 0.110 -0.293 3.243 49006 (Camel @ Camellord) 1.649 12.800 1418.00 0.012 1.000 0.004 25011 (Langdon Beck @ Langdon) 1.657 26 15.878 0.241 0.326 1.189 25011 (Langdon Beck @ Langdon) 1.657 12.790 1463.000 0.011 1.000 0.001 25003 (Trout Beck @ Moor House) 1.690 39 15.164 0.176 0.291 0.577 25003 (Trout Beck @ Moor House) 1.990 11.460 1904.00 0.041 1.000 0.000 91802 (Alt Leachdach @ Intake) 1.747 34 6.350 0.153 0.257 1.171 91802 (Alt Leachdach @ Intake) 1.747 6.502 0.003 0.992 0.000 206006 (Annalong @ Recorder) 1.801 48 15.330 0.189 0.052 1.866 206006 (Annalong @ Recorder) 1.801 1436 0.004 0.004 0.004 0.004 0.000 0.004 0.000 0.0004 0.000 0.001 <td>47022 (Tory Brook @ Newnham Park)</td> <td>1.634</td> <td>19</td> <td>7.331</td> <td>0.257</td> <td>0.071</td> <td>0.714</td> <td>47022 (Tory Brook @ Newnham Park)</td> <td>1.634</td> <td>13.450</td> <td>1403.000</td> <td>0.023</td> <td>0.942</td> <td>0.014</td>	47022 (Tory Brook @ Newnham Park)	1.634	19	7.331	0.257	0.071	0.714	47022 (Tory Brook @ Newnham Park)	1.634	13.450	1403.000	0.023	0.942	0.014
Z5011 [Langdon Beck @ Langdon] 1.657 26 15.878 0.241 0.326 1.189 Z5011 [Langdon Beck @ Langdon] 1.657 12.790 1463.000 0.013 1.000 0.001 25003 (Trout Beck @ Moor House) 1.690 39 15.164 0.176 0.291 0.577 25003 (Trout Beck @ Moor House) 1.680 11.460 1904.000 0.041 1.000 0.000 91602 (Alt Leachdach @ Inake) 1.747 34 6.350 0.153 0.257 1.171 91802 (Alt Leachdach @ Inake) 1.747 6.520 255.000 0.003 0.992 0.000 026006 (Annalong @ Recorder) 1.801 48 15.330 0.155 0.168 1.186 54022 (Severn @ Plynimon Flume) 1.864 8.690 248.000 0.010 0.000 0.400 0.004 0.904 0.000 0.004 0.904 0.000 0.404 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001	49006 (Camel @ Camelford)	1.649	6	8.832	0.110	-0.293	3.243	49006 (Camel @ Camelford)	1.649	12.860	1418.000	0.012	1.000	0.004
25003 (Trout Beck @ Moor House) 1.690 39 15.164 0.176 0.291 0.577 25003 (Trout Beck @ Moor House) 1.660 11.460 1904.00 0.041 1.000 0.000 91902 (Alt Leachdach @ Intake) 1.747 34 6.350 0.153 0.257 1.171 91802 (Alt Leachdach @ Intake) 1.747 6.520 2555.000 0.003 0.992 0.000 020006 (Annalong @ Recorder) 1.801 48 15.303 0.158 0.257 1.171 91802 (Alt Leachdach @ Intake) 1.747 6.520 2555.000 0.003 0.992 0.000 54022 (Severn @ Plynimon Fume) 1.854 377 15.031 0.156 0.168 1.183 54022 (Severn @ Plynimon Fume) 1.886 15.000 0.001 1.000 0.000 2010 (Hoving Eastby) 1.889 34 15.538 0.347 0.394 1.138 25101 (Leven @ Eastby) 1.889 15.077 80.000 0.011 1.000 0.000 0.001 2100 (Hodge Beck @ Bransdale Weir) 213 8.3	25011 (Langdon Beck @ Langdon)	1.657	26	15.878	0.241	0.326	1,189	25011 (Langdon Beck @ Langdon)	1.657	12,790	1463.000	0.013	1.000	0.001
91802 (Alt Leachdach @ Intake) 1.747 34 6.350 0.153 0.257 1.171 91802 (Alt Leachdach @ Intake) 1.747 6.520 2555.000 0.003 0.992 0.000 206006 (Annalong @ Recorder) 1.801 48 15.330 0.189 0.052 1.866 206006 (Annalong @ Recorder) 1.801 13.660 1720.000 0.024 0.980 0.000 54022 (Severn @ Pynlimon Flume) 1.854 37 15.031 0.155 0.168 1.183 54022 (Severn @ Pynlimon Flume) 1.864 860 2483.000 0.010 1.000 0.000 25019 (Leven @ Easby) 1.889 34 5.538 0.347 0.394 1.138 25019 (Leven @ Easby) 1.889 15.070 83.000 0.019 1.000 0.000 25019 (Leven @ Easby) 1.889 344 5.538 0.347 0.394 1.138 25019 (Leven @ Easby) 1.889 15.070 83.000 0.019 1.000 0.000 51002 (Horner Water @ West Luccombe 2.271 31 8.354 0.382 0.326 1.618 51002 (Horner Water @ West Luccombe 2.271	25003 (Trout Beck @ Moor House)	1.690	39	15.164	0.176	0.291	0.577	25003 (Trout Beck @ Moor House)	1.690	11.460	1904.000	0.041	1.000	0.000
Cobe Cobe <th< td=""><td>91802 (Allt Leachdach @ Intake)</td><td>1 747</td><td>34</td><td>6.350</td><td>0 153</td><td>0.257</td><td>1 171</td><td>91802 (Allt Leachdach @ Intake)</td><td>1 747</td><td>6 520</td><td>2555 000</td><td>0.003</td><td>0.992</td><td>0.000</td></th<>	91802 (Allt Leachdach @ Intake)	1 747	34	6.350	0 153	0.257	1 171	91802 (Allt Leachdach @ Intake)	1 747	6 520	2555 000	0.003	0.992	0.000
Status Status<	206006 (Annalong @ Recorder)	1.801	48	15,330	0 189	0.052	1 866	206006 (Annalong @ Recorder)	1.801	13 660	1720.000	0.024	0.980	0.000
Visual Science Constraint Con	54022 (Severn @ Plynlimon Flume)	1 854	37	15.031	0.155	0.168	1 183	54022 (Severn @ Phynlimon Flume)	1.854	8 690	2483.000	0.010	1 000	0.000
Construint Scalady Constru	25010 (Leven @ Eachy)	1 880	3/	5 538	0.133	0.100	1 138	25019 (Leven @ Eashy)	1 880	15.070	830.000	0.010	1.000	0.000
2100 (Nonge Deck @ Dialbade Weil) 2.10 41 5420 0.224 0.025 2030 21/10 (Nonge Deck @ Dialbade Weil) 2.13 100.0 600 0.003 1 0.003 1 0.003 0.978 0.000 51002 (Horner Water @ West Luccombe) 2.271 31 8.354 0.326 1.618 51002 (Horner Water @ West Luccombe) 2.271 2.030 1485.000 0.003 0.978 0.000 20306 (Rathmore Brin @ Rathmore Brin @ R	27010 (Hodao Bock @ Brancdalo Wair)	2 120	/1	0.000	0.047	0.004	0.005	27010 (Hodge Book @ Branedale Weir)	2.13	19.9/	030.000	0.013	1.000	0.004
Order (Nation Water @ West Cluccoline) 2.211 31 0.334 0.332 0.332 0.336 0.110 Shote (Nation Water @ West Cluccoline) 2.211 20.300 H0000 0.003 0.033 0.003 0.031 0.000 0.00	51002 (Horger Water @ West Luccomba)	2.130	21	9.420	0.224	0.233	1 618	51002 (Horper Water @ West Luccomb	2.13	20.380	1/195 000	0.003	0 078	0.001
Constraint of control of the	2020/6 (Pathmore Bure @ Pathmore Brid	2.211	00	10.004	0.002	0.020	0.010	2020/6 (Pathmara Burn @ Pathmara P	2.2/1	20.300	10/12 000	0.003	1.000	0.000
ZZ003 (USWay burn e Shimbor) Z.324 Z8 I.3.20 U.305 U.412 Z2003 (USway burn e Shimbor) Z.324 Z1.670 U00000 U.000 U.000 <th< td=""><td>20002 (Laure Dure @ Chilmoor)</td><td>2.010</td><td>30</td><td>10.934</td><td>0.130</td><td>0.091</td><td>0.000</td><td>20002 (Laura Dura @ Chillmoor)</td><td>2.310</td><td>22.010</td><td>1045.000</td><td>0.075</td><td>1.000</td><td>0.000</td></th<>	20002 (Laure Dure @ Chilmoor)	2.010	30	10.934	0.130	0.091	0.000	20002 (Laura Dura @ Chillmoor)	2.310	22.010	1045.000	0.075	1.000	0.000
Total 498 0.231 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0	22003 (USWAY DUITI @ STIIITIOUT)	2.324	20	19.220	0.303	0.303	0.472	22003 (USWAY DUITI @ STIIIITTOOF)	2.324	21.0/0	1000.000	0.000	1.000	0.000
Number 490 0<	Total		100											
weigineu means 0 0.251 0.240	I'Uldi Wajahtad maana		498		0.004	0.040								
	weignieu means				0.231	0.246								

DERIVING A POOLED GROWTH CURVE									
Site Edinghom Durn	upotroom of k	irgunzoon Long oonfl			Lingguaged aita				
GR NX 8355 6175 Gauged site									
		Attached Printo	uts		Oduged Site				
WINEAP-FEH s	tation details	Attached I finto							
WINFAP-FEH summary information if gauged site									
Initial Pooling Group Details									
Name	p_edingham_default								
Site of interest	Edingham Burn upstream of Kirgunzeon Lane confluence in Dalbeattie								
Return period of interest	200 years								
Other information	Í								
Version of WIN-FAP FEH	Version 3.0								
Data Files	Other								
If 'Other' chosen in Data									
Files enter file path here	G:\FEH\FEH	CD_ROM and WINFA	P\HiFlows-UK da	ata_v3.3.4_(Aug	2014)				
	Adjustment/	Changes made to De	fault Pooling Gr	oup.					
Also note site	s that were inv	estigated but retained	in the group (i.e	. for discordancy	y)				
			<u>A</u> ddition/						
Station number		Namo	Deletion/	Ro	ason				
		Name	<u>M</u> ove/	I Co	45011				
			Investigate						
49006	Came	l @ Camelford		Discordancy from sh	nort record				
44008	Winterbourne	@ Winterbourne Stee	D	Chalk.	BFI 0.811				
26802	Gypsey Race @ Kirby Grindalythe D Chalk. BFI 0.959			BFI 0.959					
22003	Usway Burn @ Shillmoor A Increase record length to circa 500 ye				th to circa 500 years				
		Final Paoling Crown	Deteile						
			Details						
	1		Hotorogonoous						
H2	Heterogeneous								
112		Goodness of F	it	003					
Accentable Fit			Distribution						
		Ge	eneralised Logisti	c					
v		Gener	alised Extreme \	o /alue					
			Pearson Type iii						
			eneralised Paret	0					
	1	Growth Curve Eit	tings	-					
		WINFAP-FFH arowth	curve fittings						
Attached print outs	√ WINEAP-FEH growth curve								
Name of Final Pooling Gro	p hiflows edingham v2								

B Appendix B - Asset summary

A Appendix B - Asset summary

A.1 Dalbeattie and District Flood Prevention Scheme 1981

A full walkover survey was undertaken to assess the condition of individual flood defence assets in Dalbeattie and Kirkgunzeon. These defence assets (listed below) collectively make up the Dalbeattie and District FPS 1980.

Category	Comments
Date of inspection(s)	22 June 2015 20 October 2015
Inspector(s)	Angus Pettit
General Inspection Information	Weather at the time of inspections was dry and sunny.
Scheme Information	Works inspected were promoted by Dumfries and Galloway Council as part of the Dalbeattie and District FPS 1980. Date of construction was 1981. The assets are now 34 years old.
Drawings	The operations are shown on drawings 6297/FPA/1/2/3/4/5. These drawings are available on the Scottish Flood Defence Asset Database and have been provided to JBA as part of this project.
Nature of inspection(s)	The inspections were walkover surveys and visual inspection of the flood defence assets shown on the drawings and referred to in the FPS. Photographs were taken. Separate topographic survey was undertaken of key assets of concern.
Nature of Assets	 Flood defence assets were constructed at the following five locations: Kirkgunzeon Lane (Dalbeattie Burn) through Dalbeattie, and the Edingham Burn. Culvert through the disused railway embankment on an unnamed tributary of the Edingham Burn. Flood embankments along the Kirkgunzeon Lane near Maidenholm Farm. Flood embankments along the Kirkgunzeon Lane upstream of Corra Bridge in the vicinity of Kirkgunzeon. Flood embankments along the Drumjohn Burn near Drumjohn Bridge.
Comments from Residents	No comments were received from residents regarding any of the FPS works.
General condition/comments	The assets were found to be in good condition consistent with asset age.

A.2 Edingham Burn

Operations listed from Upstream to Downstream and referenced by the original Scheme Works Operation Number.

JBA

Edingham Burn downstream of Barhill Road	Ref: FPS Operation 2
<image/>	Type: Channel realignment Bank: N/A Upstream Grid Ref: Height (m) (river side): N/A Height (m) (landward side): N/A Width (m): 2m channel width Length (m): ~50m Material: Stone laid in concrete. Condition: Grade 2 (Good) Part of FPS: Yes Comments: Presence of Hemlock Water-dropwort in channel Change in condition since 2006: No significant change Right bank wall levels not previously surveyed

A.2.1 Non FPS assets identified during the site visit

The following additional assets were identified during the site visit. These represent assets that were not part of the original FPS, but may have an impact on flood risk.

Asset:	Description
	 Informal brick wall adjacent to Edingham Burn (Queens Grove).
	 Surface water drainage holes through property boundary wall. On the corner of Barhill Road and John Street).

A.3 Kirkgunzeon Lane (Dalbeattie Burn) through Dalbeattie

Operations listed from Upstream to Downstream and referenced by the original Scheme Works Operation Number.

Operations unable to be explicitly inspected:

- Operation 22 Strengthening and underpinning or otherwise improving as required existing embankments and walls to Kirkgunzeon Lane at various locations.
- Operation 23 Regrading and minor realignment as required of the bed of Kirkgunzeon Lane at various locations.
- Operation 24 Carrying out work as required to protect an maintain services and prevent reverse flow in drains at various locations.

Name: Footbridge replacement	FPS Operation 21
<image/> <image/>	 Type: Footbridge replacement and approaches in Colliston Park Bank: N/A Upstream Grid Ref: Soffit (m): 15.87mAOD Opening width (m): 8.18m Material: Steel beams with concrete deck and steel railings Condition: Grade 2 (Good) Part of FPS: Yes Comments: Good condition. Abutments in good condition with rock armour placed at base. Service pipes on upstream face. Change in condition since 2006: No significant changes.

Name: Embankment adjacent to Munches Park	Ref: FPS Operation 3
From Right Bank looking upstream	 Type: Embankment Bank: Right Upstream Grid Ref: Height (m) (river side): 1.4-3.0m Height (m) (landward side): 1.40m Width (m): 0.40m Length (m): 115m Material: Earth Condition: Grade 2 (Good) Part of FPS: Yes Comments: Ties into footbridge and stone wall downstream and high ground upstream. Landward side is well maintained in boundary of Munchies Park House. Crest and river side very overgrown. River side made up of rock armour, mortared wall and stone pitching in various sections. Some erosion of base evident. Un-flapped outfall present on right bank at
	 On happed outlan present on hight bank at downstream end. Change in condition since 2006: No significant change
Fight bank rock armour	Fight bank rock armour and eroded concrete sill
Fight bank stone wall	Un-flapped outfall

Name: Raised abutments and deck (John Street to Munches Park)	FPS Operation 20
	Type: Raised abutment and deck levels of bridges in Colliston Park (Footbridge No. 4) Bank: N/A Upstream Grid Ref: Soffit (m): mAOD Opening width (m): m Material: Steel beams with concrete deck and steel railings Condition: Grade 2 (Good) Part of FPS: Yes Comments: • Good condition.
Upstream face of new footbridge	 Service pipe on upstream face.
	Change in condition since 2006:
	No significant changes.
	Type: Raised abutment and deck levels of bridges in Colliston Park (Footbridge No. 3) Bank: N/A Upstream Grid Ref: Soffit (m): mAOD Opening width (m): m Material: Steel frame with concrete deck Condition: Grade 2 (Good) Part of FPS: Yes Comments: • Good condition. • Abutments in good condition with no scour.
Upstream face of new footbridge	Change in condition since 2006:
	NU SIGHINGAH CHANGES.

Name: Embankment adjacent to Colliston Park	FPS Operation 4
Tooking upstream. Approximate location of removed weir.	Type: Weir removal and channel modification. Walls were not part of FPS but do act as flood protection to riparian properties. Bank: N/A Upstream Grid Ref: Wall Height (m) (river side): Variable Wall Height (m) (landward side): Variable - 0.2m D/S, 1.05m U/S. Wall Width (m): 0.30m Wall Length (m): 35m Material: Concrete foundation, mortared stone and 'fyfestone' walls. Condition: Grade 2 (Good) Part of FPS: No Comments: • Walls are not part of FPS, but do offer flood protection Change in condition since 2006:
Concrete foundation and mortared stone walls	Two significant citarys Image: Signiter Image: Significa

Type: Culvert Bank: Left Upstream Grid Ref: Height (m) (river side): N/A Height (m) (landward side): N/A Width (m): 0.15m diameter Length (m): 200m Material: UNKNOWN Oracle of the polynomial
Inlet and screen Part of FPS: Yes Comments: • Three manholes in Colliston Park identified but not inspected internally. • Inlet structure has informal weir across burn to elevate water levels locally. • Inlet structure has steel cover. • Inlet and screen present. Screen is partially blocked and deformed. Screen is not to current design standards. • Not previously inspected. • Cultet into pond • Culvert flows full - unable to CCTV culvert at upstream end.

Name: Flood wall along John Street **FPS Operation 6** Type: Wall Bank: Right **Upstream Grid Ref:** Height (m) (river side): 2.4m to bed Height (m) (landward side): 1m Width (m): 0.35m Length (m): 97m Material: Stone Condition: Grade 2 (Good) Part of FPS: Yes Comments: Looking upstream at right bank Possible bypassing route identified at upstream • end through garden wall gate. Crest level lower at footbridge • Un-flapped culvert at upstream end (see below) • Change in condition since 2006: No significant change Downstream end of wall tied into wall Crest lower at footbridge Possible bypassing route through gate at U/S end

JBA

Upstream face of new footbridge

FPS Operation 19

Type: Footbridge replacement and approaches from Water Street and Isle Croft House Bank: N/A Upstream Grid Ref: Soffit (m): 12.68mAOD Opening width (m): 18.07m Material: Steel deck and railings Condition: Grade 2 (Good) Part of FPS: Yes Comments:

- Good condition.
- Abutments in good condition, no scour.
- Presence of Hemlock Water-dropwort in channel on left bank.

Change in condition since 2006:

• No significant changes.

Name: Wall and embankment between Pond and High Street

Stone face (pond side) with embankment to rear

FPS Operation 7

Type: Embankment (U/S) with stone face on pond side Bank: Left Upstream Grid Ref: Height (m) (river side): 1.30m Height (m) (landward side): 1.60m Width (m): Variable Length (m): 35m Material: Earth/mortared stone Condition: Grade 4 (Poor) Part of FPS: Yes

Comments:

- Ties into wall downstream
- Vegetation growth on crest/bank
- Poorly maintained
- Crest level is not uniform

Change in condition since 2006:

- Some degradation in crest observed
- Vegetation has grown significantly on top/rear of embankment.

Name: Wall upstream of High Street Bridge	FPS Operation 8
	Type: Wall on top of concrete foundation Bank: Left Upstream Grid Ref: Height (m) (river side): 1.5m Height (m) (landward side): 0.9m, then 1.5m to bed (concrete foundation) Width (m): 0.3m Length (m): 16m Material: Concrete Condition: Grade 2 (Good) Part of FPS: Yes Comments: • Uniform crest level • Tied into bridge at D/S end • Tied into stone wall at U/S end Change in condition since 2006: • Not previously inspected.

Drop in level to ramp to High Street at U/S end

JBA

Name: Scour protection at High Street road bridge

FPS Operation 10

Upstream face of High Street Bridge

Type: Concrete scour protection Bank: Left and right **Upstream Grid Ref:** Height (m) (river side): Variable 0.4-0.8m Width (m): N/A Length (m): 50m Material: Concrete Condition: Grade 2 (Good) Part of FPS: Yes Comments:

- Concrete benching in good condition. •
- No sign of cracking .
- Little vegetation growth
- No obvious scour holes

Change in condition since 2006:

Not previously inspected. •

Downstream left bank

Downstream right bank

Name: Weir removal

FPS Operation 11

Type: Weir removal Bank: N/A Comments: •

Upstream face of High Street Bridge

Upstream Grid Ref: Height (m) (river side): Unknown Width (m): N/A Length (m): ~17m Material: Unknown Condition: N/A Part of FPS: Yes Small bedrock weir now present.

Walls and banks appear to be in reasonable condition and stable.

Change in condition since 2006:

Not previously inspected. •

Comments: N/A

FPS Operation 14

Type: Tree felling and excavation of 125m of bed/bank to aid Operation 15. Bank: Left Upstream Grid Ref: Comments:

Area has become overgrown.

Concrete scour protection and rock armour

Wall tied into older brick wall (previously the building external wall) leading to footbridge

Concrete scour protection and rock armour

Wall tied into older brick wall (previously the building external wall) leading to footbridge

Name: Embankment around bowling green

Embankment looking downstream

FPS Operation 17 continued

Type: Embankment (armoured for short section at upstream end) Bank: Right **Upstream Grid Ref:** Height (m) (river side): 0.8m Height (m) (landward side): 0.8m Width (m): 1.0m Length (m): 75m Material: Earth Condition: Grade 2 (Good) Part of FPS: Yes Comments: Uniform crest level . Well maintained embankment .

- Stone armoured on river side face for 8m at upstream end of embankment
- Tied into retaining walls at U/S
- Embankment at downstream end is not tied into high ground

Change in condition since 2006:

- No significant change.
- Embankment gap was present in 2006.

Name: Channel modification	FPS Operation 25
	Type: Channel widening and removal of obstructions. Bank: N/A Upstream Grid Ref: Height (m) (river side): N/A Height (m) (landward side): N/A
	Width (m): River width Length (m): 245m Material: N/A Condition: Grade 3 (Average) Part of FPS: Yes
Embankment looking upstream from footbridge	 Comments: Change in bed levels/shape unknown. Vegetation on banks has matured since works. Change in condition since 2006: No significant change.

JBA consulting

A.4 Edingham Burn upstream

Downstream face

A.5 Kirkgunzeon Lane at Maidenholm

Operations unable to be explicitly inspected:

• Operation 28 - Removal of scrub and trees and heightening of the existing embankment on the north bank of the Kirkgunzeon Lane adjacent to Maidenholm Farm.

A.6 Kirkgunzeon Lane at Kirkgunzeon

Outlet through embankment

Upstream Grid Ref: Height (m) (river side): N/A Height (m) (landward side): N/A Width (m): 0.3m diameter pipe Length (m): N/A Material: N/A Condition: Grade 3 (Average) Part of FPS: Unknown

Comments:

- Unclear if this was part of original works or not. Change in condition since 2006:
- Culvert not noted by previous survey. Unclear if this has been added or not.

Recently dredged material on left bank of drainage channel downstream

Inlet from lade through embankment

Flap valve on Corra Mill Lade

FPS Operation 30

Type: Flap valve Bank: N/A Upstream Grid Ref: Height (m) (river side): N/A Height (m) (landward side): N/A Width (m): 2m Length (m): N/A Material: Steel Condition: Grade 3 (Average) Part of FPS: Unknown Comments:

- Flap is stuck open by debris and bed material.
- Debris in channel needs to be removed.

Change in condition since 2006:

• Not visited previously.

A.6.2 Non FPS assets identified during the site visit

The following additional assets were identified during the site visit. These represent assets that were not part of the original FPS, but may have an impact on flood risk.

Asset:	Description				
	 Arch bridge over river at Kirkgunzeon. Water gate below structure on downstream side. Possible blockage risks. 				

JBA

A.7 Culvert at A711 at Mossfoot

Operations unable to be explicitly inspected:

• Operation 32 - Widening and regrading of existing ditches at Mossfoot

Name: Culvert

Channel upstream of inlet

Screen on inlet

FPS Operation 31

Type: Culvert with screen on upstream face Bank: N/A Upstream Grid Ref: Height (m) (river side): 1m screen height Height (m) (landward side): N/A Width (m): 0.73 diameter culvert Length (m): 231m Material: Concrete Condition: Grade 3 (Average) Part of FPS: Unknown Comments:

JBA

- Channel is overgrown and not maintained.
- Screen in good condition.
- Pile of grass cuttings on right bank upstream (risk of blockage).
- Culvert head and wingwalls of brick construction in good condition.
- Security fence around inlet.
- Outlet unable to be found.

Change in condition since 2006:

- Channel is more overgrown (seasonal).
- Pipe CCTV survey undertaken. See separate report.

A.8 Drumjohn

Operations unable to be explicitly inspected:

- Operation 35 Strengthening and underpinning or otherwise improving existing embankments and walls to burns, lades and ancillary ditches at various locations.
- Operation 36 Regrading and minor realigning of the bed as required to burns, lades and ancillary ditches at various locations.
- Operation 37 Carrying out work as required to protect and maintain services and prevent reverse flow in drains.

Access over embankment into field

A.8.3 Non FPS assets identified during the site visit

The following additional assets were identified during the site visit. These represent assets that were not part of the original FPS, but may have an impact on flood risk.

Asset:	Description
	 Water gate beneath access bridge. Relief culvert with screen on downstream side.
	 Water gate downstream of above access bridge located on line of disused railway.

JBA

• Watergate beneath A711 road bridge.

C.1 Introduction and conceptual modelling approach

This section describes how two culverts close to Dalbeattie have been modelled in order to estimate culvert capacity and the impact of blockages on the conveyance of flood waters.

Both watercourses were modelled using HEC-RAS (Hydraulic Engineering Center - River Analysis System). HEC-RAS is a one dimensional model software package developed by the US Army Corps of Engineers and is a standard tool for hydraulic modelling in the UK.

Factors that contribute to blockage risks include the opening size, capacity, presence and type of screen and type and condition of upstream channel/catchment contributing reaches, the last of which has not been modelled in the present study.

C.2 Topographic survey of watercourse and structures

A survey of the river channel cross sections at either end of the structure was carried out by JBA in 2015. These drawings are provided in Appendix B and their detail determined the watercourse geometries used in the model.

C.3 Key structures and culvert capacity modelling

1D modelling was undertaken to determine the capacity of two culvert locations in the Dalbeattie area. The first culvert is a double culvert which occupies the channel of the Edingham Burn close to the village of Edingham. The second culvert is a single culvert and occupies a minor transient watercourse which drains a small catchment artificially isolated from the Drumjohn catchment near the village of Kirkgunzeon.

Figures 1 & 2 show the locations of the two culverts and Table 1 shows images taken from the up and downstream faces. Table 2 provides details of the two locations modelled along with the parameters and boundary conditions used in the model runs.

Figure 6. Location map of Edingham Burn culvert

JBA

Figure 7. Location map of culvert adjacent to A711

JBA consulting Table 4. Photographs of culvert inlets and outlets

Table 5. Modelled structures and model setup parameters for Edingham Burn and A711 culverts

Structure name	Edingham Burn Culvert	Culvert adjacent to A711
Location	OS NGR 283816, 562496 (U/S) - 283836, 562483 (D/S)	OS NGR 287253, 566418 (U/S) - 287101, 566243 (D/S)
Diameter (m)	1.25 (per culvert - double culvert)	0.75 (single culvert)
Opening area (m2)	2.46 (both culverts)	0.44

JBA consulting

Culvert length (m)	23	231
	No Screen. 50%	
	blockage at time of	Screen upstream of inlet.
	survey (Aug. 2015) due to	Blockage modelled as
Screen and method of blockage	sediment aggradation.	weir.
Modelled reach length (m)	43	251
U/S Invert level (m)	28.00	63.79
U/S Soffit level (m)	29.25	64.52
D/S Invert level (m)	27.97	63.03
D/S Soffit level (m)	29.09	63.78
Weir coefficient	1.4	1.4
Entrance loss coefficient	0.5	0.5
Exit loss coefficient	1.0	1.0
Steady flow boundary		
conditions	0.00361, Normal Depth	0.00298, Normal Depth
Culvert roughness -		
Manning's n for top	0.025	0.025
Culvert roughness -		
Manning's n for bottom	0.03	0.03
Channel roughness -		
Manning's n		
Left over bank	0.06	0.06
Channel	0.035	0.035
Right over bank	0.06	0.06

Model runs were carried out in both unblocked and blocked scenarios to test culvert capacity under different discharge events. Discharge events on the Edingham Burn were empirically determined by FEH flood runoff data from Caste Cottage. No data were available for the culvert adjacent to the A711 so a number of theoretical discharge events were created ranging from 0.1 to 2 m³/s.

The Culvert adjacent to the A711 has a sloped trash screen, as shown in table 1. There is no default method for modelling culvert screens in HEC-RAS. By inserting a weir unit immediately upstream of the culvert and setting the weir crest to the height of the top of the screen, complete blockage of the screen can be represented. This models screen blockage correctly when screens block and water weirs over the top of the screen. This is not appropriate when a screen is flush with the inlet.

Two cross sections, representing the inlet and outlet of each structure location, respectively, were used to determine each model reach, along with a further cross section upstream and downstream of the culverts which took on the watercourse geometry from its nearest surveyed cross section. The elevations of these extrapolated cross sections were adjusted to fit a continuation of the slope of each culvert.

C.4 Results

Model results are presented in the following section. The model initially assumed no blockage which may be unrealistic in the modelled flood events, particularly given the sedimentation depicted in Figure 1.1 for the Edingham burn culvert when surveyed in August 2015. As a result, a model run was performed with 50% blockage in the Edingham burn culvert and with a blocked weir in the A711 culvert to provide a more realistic model output.

Full modelled flood level results for each burn are given in Appendix E.

C.5 Channel capacity and blockage results

An assessment was made of the capacity of the watercourses to identify reaches of poor conveyance, under capacity channels and locations where flood defences may be required. Whilst the watercourse capacity is impacted by backwater effects at structures the capacity of the watercourses has been assessed assuming no structure blockage. Furthermore, whilst structure upgrades can reduce these backwater impacts the assessment provides a first estimate of locations where overbank flood risk may be important.

JBA

The following broad findings have been ascertained:

- The Edingham burn culvert has sufficient capacity to convey the 1000 year flood without overtopping in the unblocked scenario but overtopping occurs with the 1000 year flood event where 50% blockage is assumed. A significant backwater effect results above the 100 year flood without blockage and above the 10 year flood event with 50% blockage.
- The culvert adjacent to the A711 exhibits good conveyance for small discharge events where the modelled 2 year and 5 year flood events represent discharges of 0.1 and 0.2m³/s, respectively, as shown in Figures 5 & 6. Discharge events exceeding 0.4 cumecs, such as the modelled 25 year event cause a large backwater effect and overtopping of the modelled culvert. Model runs for an unblocked culvert and a two-thirds blocked screen resulted in similar outputs.

Edingham Burn					
Return Period	U/S water le	vel (m)	D/S water level (m)		
(empirical)	Current	50% blockage	Current	50% blockage	
2 year	28.53	29.08	28.32	28.32	
5 year	28.62	29.20	28.40	28.40	
10 year	28.70	29.32	28.48	28.48	
25 year	28.76	29.43	28.53	28.53	
30 year	28.78	29.49	28.55	28.55	
50 year	28.88	29.75	28.64	28.64	
75 year	28.93	29.89	28.68	28.68	
100 year	28.98	30.05	28.72	28.72	
200 year	29.07	30.40	28.80	28.80	
500 year	29.25	31.10	28.94	28.94	
1000 year	29.47	31.51	29.07	29.07	
Maximum discharge before which overtopping occurs (m ³ /s) (return period)	4.3m ^{3/} s (1000 year)	3.6m³/s (200 year)			

Table 6. Modelled culvert capacities in response to blockage for

Culvert adjacent to A711								
	U/S water lev	vel (m)	D/S water level (m)					
Return Period (theoretical) Current		Screen blockage modelled as upstream weir	Current	Screen blockage modelled as upstream weir				
2 year	64.10	64.10	63.10	63.10				
5 year	64.25	64.25	63.19	63.19				
10 year	64.69	64.69	63.32	63.32				
25 year	65.23	65.23	63.42	63.42				
30 year	65.37	65.37	63.52	63.52				
50 year	65.47	65.48	63.61	63.61				
75 year	65.52	65.52	63.70	63.70				
100 year	65.55	65.55	63.78	63.78				
200 year	65.58	65.58	63.85	63.85				
500 year	65.60	65.60	63.91	63.91				
1000 year	65.62	65.62	63.96	63.96				
Maximum discharge before which overtopping occurs (m ³ /s) (return period)	0.4m ³ /s (10 year)	0.4 m ³ /s (10 year)						

As a result of the method of blockage in the model for the culvert adjacent to the A711 the water levels up and downstream of the culvert are not affected by the blockage above the 10 year event. The cause of this is as follows. Small flows allow water to weir over the blocked screen into the culvert. When the culvert becomes full of water above the 10 year flood the backwater effect increases and overtopping occurs, meaning that the effect of the weir is minimal during discharge events greater than this. The similarities in Figures 3 and 4 demonstrate this effect.

Figure 8. Long profile model output for Edingham Burn culvert - no blockage

Figure 9. Long profile model output for Edingham Burn culvert - 50% blockage

Figure 11. Long Profile model output for culvert adjacent to A711 - Two-thirds weir blockage

JBA consulting

Legend WS 1000 year WS 500 year WS 500 year WS 200 year WS 100 year WS 50 year WS 50 year WS 50 year WS 20 year WS 10 year WS 2 year WS 10 year

C.6 Conclusions and maintenance recommendations

The model outputs for the Edingham Burn culvert show that culverts are of sufficient capacity for the setting since overtopping is unlikely even considering the observed sediment blockage.

The modelling indicated that the A711 culvert may be at risk of overtopping, or more realistically pooling upstream, during discharge events exceeding 0.4m³/s. LiDAR data shows that rather than a simple slope between the soffit of the inlet and the soffit of the outlet there is a gradual increase in land surface elevations to a maximum of 97.00m (1.95m above the top of the modelled culvert) 84m from the inlet in the downstream direction. This would likely limit overtopping and instead cause pooling upstream of the culvert. This could have implications for the agricultural land and A711 to which the watercourse is adjacent. Water surface elevations of the modelled flows are not sufficient to compromise the A711 with the current model setup. Further modelling suggests that a flow of 10m³/s may have the potential to flood the road.

D Appendix G - Flood Maps

E Appendix E - Flood levels

Node	2vr	10vr	25vr	M 50vr	ax Water Le	vels (mAOD) 200vr	200vrCC	1000vr	200vrCC adi
DALB01_3895	40.293	40.732	40.947	41.116	41.272	41.379	41.526	41.583	41.758
DALB01_3814 DALB01_3728	40.284	40.725	40.942	41.113 41.094	41.269	41.377	41.525	41.582	41.774 41.732
DALB01_3631	40.104	40.573	40.817	41.012	41.186	41.304	41.472	41.536	41.753
DALB01_3483	39.416	39.698	39.844	39.959	40.059	40.151	40.351	40.455	40.827
DALB01_3391 DALB01_3305	39.3	39.534	39.805	39.929	40.035	40.123 40.111	40.33	40.43	40.765
DALB01_3232	38.512	38.775	38.903	38.995	39.075	39.142	39.306	39.384	39.71
DALB01_3090u DALB01_3090d	37.251 35.64	37.44 35.796	37.535	37.606 35.951	37.675	37.736 36.078	37.911 36.291	38.002 36.389	38.425 36.723
DALB01_3064	34.839	35.023	35.128	35.219	35.302	35.373	35.521	35.632	36.184
DALB01_3038 DALB01_3012	34.008	34.168	34.253	34.321	34.382	34.437	34.569	34.654	35.065
DALB01_2986	32.378	32.548	32.638	32.705	32.768	32.821	32.953	33.025	33.364
DALB01_2960	31.627	31.788	31.873	31.942	31.997	32.046	32.172	32.243	32.595
DALB01_2934 DALB01_2893	28.955	29.125	29.22	29.283	29.349	29.403	29.533	29.609	29.991
DALB01_2852	27.133	27.335	27.444	27.527	27.607	27.671	27.831	27.928	28.377
DALB01_2811 DALB01_2779	25.508	25.754 24.783	25.885 24.911	25.985	25.103	25.159	25.35	25.463	26.02
DALB01_2747	23.585	23.824	23.954	24.054	24.148	24.228	24.428	24.543	25.056
DALB01_2715 DA01_2715BU	22.85	23.055	23.176	23.264	23.353	23.428	23.602	23.693	24.001
DA01_2707BD	22.795	22.963	23.058	23.124	23.19	23.244	23.366	23.429	23.63
DALB01_2707	22.795	22.963	23.058	23.124	23.19	23.244	23.366	23.429	23.63
DALB01_2649	21.472	21.66	21.763	21.838	21.913	21.969	22.107	22.197	22.74
DALB01_2620	20.909	21.106	21.213	21.291	21.374	21.444	21.661	21.813	22.608
DALB01_2562	19.741	19.951	20.065	20.142	20.235	20.308	20.502	20.621	21.172
DALB01_2533	19.046	19.273	19.397	19.492	19.587	19.668	19.882	20.004	20.527
DALB01_2504 DALB01_2474	18.363	17.959	18.112	18.172	18.946	19.029	19.255	19.374	18.8
DALB01_2445	17.068	17.352	17.47	17.589	17.685	17.765	17.942	18.034	18.39
DALB01_2422 DALB01_2399	16.607	16.892	17.078	17.225	17.383	17.483	17.688	17.853	18.244
DALB01_2375	15.777	16.039	16.163	16.241	16.301	16.349	16.465	16.527	16.693
DALB01_2352	15.501	15.765	16.005	16.125	16.184	16.228	16.334	16.399	16.542
DALB01_2293U	14.907	15.123	15.206	15.273	15.33	15.381	15.506	15.573	16.353
DA01_2293BU DA01_2293BD	14.907	15.123	15.206	15.273	15.33	15.381	15.506	15.573	16.353
DALB01_2293D	14.891	15.103	15.182	15.247	15.302	15.352	15.475	15.54	15.841
DALB01_2280	14.83	14.917	14.956	14.989	15.017	15.049	15.152	15.227	15.561
DALB01_2273 DALB01_2265	14.752 14.752	14.83 14.83	14.883 14.883	14.911 14.911	14.936 14.936	14.975 14.975	15.091 15.091	15.197 15.197	15.572 15.572
DALB01_2220	14.318	14.61	14.695	14.741	14.801	14.858	14.996	15.103	15.553
DALBU1_2205 DALB01_2176U	14.203 13.732	14.645 14.102	14.777 14.244	14.836 14.352	14.889 14.45	14.939 14.531	15.065 14.71	15.178 14.822	15.608 15.35
DA01_2176BU	13.732	14.102	14.244	14.352	14.45	14.531	14.71	14.822	15.35
DAU1_2176BD DALB01_2176D	13.731	14.101	14.244	14.351	14.45 14 45	14.531	14.71	14.821	15.286
DALB01_2154	13.293	13.903	14.203	14.378	14.517	14.628	14.837	14.973	15.429
DALB01_2136	12.967	13.328	13.494	13.601	13.7	13.796	13.998	14.128	14.756
DALB01_2069	12.541	12.624	12.699	12.767	12.838	13.321	13.049	13.161	13.672
DALB01_2026U	12.483	12.524	12.575	12.635	12.711	12.791	12.983	13.117	13.764
DA01_2026BD	12.483	12.524	12.575	12.635	12.711	12.791	12.983	13.117	13.764
DALB01_2026D	12.483	12.524	12.575	12.635	12.711	12.791	12.983	13.117	13.554
DALB01_1948 DALB01_1930	11.673	12.061	12.258	12.406	12.53	12.639	12.881	13.036	13.617
DALB01_1924	11.012	11.349	11.524	11.665	11.796	11.928	12.217	12.392	13.221
DALB01_1898U DA01_1898BU	10.922	11.262 11.262	11.434 11.434	11.569 11.569	11.697 11.697	11.821 11.821	12.093 12.093	12.258	13.062 13.062
DA01_1898BD	10.922	11.262	11.434	11.569	11.697	11.821	12.093	12.258	12.979
DALB01_1898D	10.922	11.262	11.434	11.569	11.697	11.821	12.093	12.258	12.979
DALB01_1348 DALB01_1799	9.948	10.788	10.335	10.491	10.601	10.706	10.94	11.027	11.995
DALB01_1762	9.427	9.73	9.888	10.018	10.138	10.251	10.501	10.658	11.472
DA01_1750BD	9.427	9.73	9.888	10.018	10.138	10.251	10.501	10.658	11.472
DALB01_1750	9.427	9.73	9.888	10.018	10.138	10.251	10.501	10.644	11.193
DALB01_1684 DALB01_1668	8.505	9.025	9.205	9.352 9.254	9.492	9.626	9.926	10.074	10.609
DALB01_1633U	8.085	8.425	8.58	8.708	8.823	8.916	9.118	9.252	9.819
DA01_1633BU DA01_1633BD	8.085	8.425 8.425	8.58 8.58	8.708	8.823	8.916 8.915	9.118 9.117	9.252	9.819 9.819
DALB01_1633D	8.085	8.425	8.58	8.708	8.822	8.915	9.117	9.252	9.819
DALB01_1615 DALB01_1582	7.78	8.11	8.268	8.398	8.516	8.62	8.824	8.943	9.48
DALB01_1549	7.448	7.759	7.901	8.013	8.127	8.234	8.485	8.623	8.903
DALB01_1493	6.913	7.199	7.331	7.436	7.534	7.623	7.866	8.041	9.378
DALB01_1400U	6.311	6.702	6.885	7.049	7.208	7.365	7.762	8.016	9.205
DA01_1400BU	6.311	6.702	6.885	7.049	7.208	7.365	7.762	8.016	9.205
DAU1_1400BD DALB01 1400D	6.227	6.519	6.652	6.795	6.943	7.077	7.406	7.589	8.643
DALB01_1332	6.089	6.423	6.595	6.738	6.88	7.009	7.321	7.497	8.537
DALB01_1190 DALB01_1059U	5.958	6.354 6.056	6.556 6.246	6.714 6.397	6.87 6.545	7.009	7.345	7.538	8.586 8.407
DA01_1059BU	5.67	6.056	6.246	6.397	6.545	6.677	7.006	7.172	8.407
DA01_1059BD DALB01_1059D	5.67	6.056 6.056	6.246 6.246	6.397 6.397	6.545 6.545	6.677 6.677	7.006	7.172	8.318 8.318
DALB01_0895	5.442	5.869	6.069	6.229	6.384	6.524	6.859	7.035	8.223
DALB01_0780 DALB01_0656	5.367	5.854	6.084 5.885	6.259	6.425 6.210	6.57	6.888	7.049 6.865	8.015 8.072
DALB01_0567	5.134	5.623	5.844	6.014	6.181	6.325	6.67	6.835	8.084
DALB01_0493 DA01_0493RU	5.005	5.473 5.479	5.685	5.846 5.846	6.005 6.005	6.138	6.463	6.595	7.8 7.9
DA01_0493BD	5.005	5.475	5.683	5.842	5.995	6.124	6.435	6.555	7.49
DALB01_0480 DALB01_0348	5.007	5.475	5.683	5.842	5.995	6.124	6.435	6.555	7.49
DALB01_0251	4.863	5.356	5.584	5.77	5.946	6.087	6.419	6.541	7.53
DALB01_0173	4.717	5.282	5.533	5.727	5.91	6.054	6.391	6.513	7.501
DA01_0093BU	4.615	5.12	5.34	5.51	5.668	5.788	6.074	6.129	7.202
DA01_0093BD	4.589	5.061	5.26	5.402	5.527	5.61	5.79	5.799	6.563
DALB01_0086 DALB01_0000	4.589 4.046	5.061 4.602	5.26 4.871	5.402	5.527 5.212	5.61 5.256	5.79 5.264	5.799 5.264	6.563 5.265
DALB01_D085	3.483	4.014	4.245	4.42	4.566	4.651	4.809	4.905	5.167
EDIN01_0529 EDIN01_0467	22.371 21 449	22.484 21.647	22.519 21.738	22.536 21.766	22.555 21.807	22.583 21.867	22.615 21 926	22.648	22.663 22.011
EDIN01_0464	21.356	21.534	21.606	21.659	21.718	21.823	21.947	22.036	22.071
EDIN01_0411 EDIN01_0368	20.089	20.277	20.371	20.448	20.528	20.567	20.589	20.64	20.665
EDIN01_0359	18.903	19.098	19.204	19.295	19.389	19.484	19.553	19.625	19.654
EDIN01_0321 EDIN01_0266	18.348	18.574	18.698	18.798	18.86	18.927	18.966	19.033	19.053
EDIN01_0250	17.651	17.941	18.036	18.111	18.187	18.278	18.359	18.452	18.470
EDIN01_0190	17.34	17.593	17.652	17.695	17.737	17.781	17.815	17.852	17.866
EDIN01_0186 EDIN01_0104	17.287 16.955	17.563 17.356	17.621 17.393	17.663 17.419	17.706 17.452	17.751 17.473	17.786 17.488	17.828 17.503	17.847 17.509
EDIN01_0103	16.954	17.367	17.415	17.454	17.496	17.534	17.565	17.603	17.62
ED01_0103U1	16.866	17.235	17.288	17.334	17.381	17.42	17.451	17.487	17.504
ED01_0103U2	16.866	17.235	17.288	17.334	17.381	17.42	17.451	17.487	17.504
ED01_0089D2	16.717	17.012	17.073	17.13	17.187	17.227	17.257	17.291	17.307
ED01_0089D3	16.717	17.012	17.288	17.13	17.187	17.42	17.451	17.487	17.304
EDIN01_0089	16.533	16.74	16.812	16.884	16.953	16.994	17.024	17.055	17.07
EDIN01_0087 EDIN01_0064	16.455 16.279	16.652	16.725 16.529	16.805 16.598	16.873 16.669	16.906 16.718	16.928 16.761	16.95 16.801	16.961 16.814
EDIN01_0044	15.722	15.919	16.001	16.064	16.127	16.175	16.215	16.256	16.284
EDINU1_0007U ED01_0007BU	14.943 14.943	15.148 15.148	15.221 15.221	15.282 15.282	15.35 15.35	15.4 15.4	15.443 15.443	15.486 15.486	15.677 15.677
ED01_0007BD	14.831	14.955	15.017	15.064	15.119	15.167	15.234	15.312	15.622
EDIN01_0007D EDIN01_0000	14.831 14.811	14.955 14.927	15.017 14.988	15.064 15.032	15.119 15.085	15.167 15.133	15.234 15.205	15.312 15.288	15.622 15.612

NonePay		Max Water Levels (mAOD)									
KINKCOGentler <t< th=""><th>Node</th><th>2yr</th><th>10yr</th><th>25yr</th><th>50yr</th><th>100yr</th><th>200yr</th><th>200yrCC</th><th>1000yr</th><th></th><th>200yrCC_adj</th></t<>	Node	2yr	10yr	25yr	50yr	100yr	200yr	200yrCC	1000yr		200yrCC_adj
KIRK02G81.31G8.373G8.377G8.37G8.37G8.37G8.37G8.37G8.38G8.387G8.38G8.387G8.38G8.387G8.38G8.387G8.38G8.387G8.39G8.387G8.39G8.387G8.39G8.387G8.39G8.383G8.387G8.39G8.383G8.387G8.39G8.383G8.383G8.387G8.393G8.383G8.387G8.393G8.383G8.387G8.393G8.383G8.387G8.393G8.393G8.383G8.383G8.387G8.393G8.39	KIRK02_0811	69.492	69.652	69.726	69.781	69.844	69.914	70.024	70.091		70.178
KIRK02_070268.0368.30768.44568.57268.7168.80468.8666.8866.8868.807KIO2_070266.04066.05166.30768.4468.5568.7268.72168.72168.72168.73168.8468.8668.877KIO2_068PD66.05166.30566.4468.55668.72167.70167.92168.93366.80268.817KIRX02_053367.64967.77167.8567.77667.75367.73467.73567.73467.83467.03067.73468.027KIRX02_013366.64466.9067.0367.14567.73467.73467.73567.73	KIRK02_0811d	68.519	68.734	68.847	68.947	69.071	69.162	69.27	69.336		69.415
KNC2_0722U68.0568.30768.43668.7268.73168.84568.84568.847KIRX02_068968.0568.0468.5668.72168.7268.7268.8368.84KIRX02_065967.64967.73767.8567.78767.79067.90268.02368.81KIRX02_026566.50767.34567.735 <td< td=""><td>KIRK02_0702</td><td>68.05</td><td>68.307</td><td>68.445</td><td>68.572</td><td>68.731</td><td>68.804</td><td>68.86</td><td>68.88</td><td></td><td>68.897</td></td<>	KIRK02_0702	68.05	68.307	68.445	68.572	68.731	68.804	68.86	68.88		68.897
KN20_0689D68.0368.0468.2567.7268.7268.7268.7367.8668.87KNR02_053367.6467.7767.8367.8767.8767.9767.9268.0368.0368.81KNR02_040367.53567.7367.3467.37467.37467.37567.7067.9268.0368.0368.03KNR02_013366.64466.05667.0367.13467.34967.50367.75567.70567.9668.03KNR02_013366.64466.8967.0367.13167.20267.21767.4467.50467.505KNR02_01278066.64466.8967.03667.31367.20267.21767.4467.50467.505KNR02_000566.20166.3967.03667.3367.3266.3366.3366.3366.3466.3967.035KNR02_200066.52366.58466.57465.8765.8765.8765.8765.8766.3366.3366.0466.39KNR03_20065.9865.0963.9163.9464.3864.3864.3864.3966.3466.39KNR03_20065.9964.17364.27565.8765.8765.8765.8765.9865.9965.9865.9965.9865.9965.9	KI02_0702BU	68.05	68.307	68.445	68.572	68.731	68.804	68.86	68.88		68.897
KINK02_056966.80166.80268.40468.8568.72168.72268.87268.8668.86KINK02_056367.78467.78767.78467.78767.79767.81467.81466.02766.81.81KINK02_026666.69067.33467.33467.73467.73467.73467.73467.73567.73467.83467.03467.83467.03467.83467.03467.83467.03467.83467.03567.03467	KI02_0689BD	68.051	68.305	68.44	68.565	68.721	68.792	68.843	68.86		68.874
KIKK02_055367.6867.7767.8867.87867.87967.99967.99268.02768.02766.116KIKK02_026666.90767.1467.3167.37467.47567.70167.92468.00368.007KIKK02_013366.64466.91667.03367.21667.34967.50367.78567.22467.92666.030KIKC0_0127ED66.64466.9667.0367.13167.20267.27167.42467.50467.53KIKC0_0127ED66.64466.9967.03667.13167.20267.27167.42467.50467.637KIKC0_000566.20166.3966.19466.5266.3366.3466.	KIRK02 0689	68.051	68.305	68.44	68.565	68.721	68.792	68.843	68.86		68.874
KINK02_003G7.32sG7.34sG7.37sG7.701 <thg< td=""><td>KIRK02 0553</td><td>67.649</td><td>67.777</td><td>67.85</td><td>67.878</td><td>67.894</td><td>67.909</td><td>67.992</td><td>68.082</td><td></td><td>68.153</td></thg<>	KIRK02 0553	67.649	67.777	67.85	67.878	67.894	67.909	67.992	68.082		68.153
KINKO2 Q266666.90767.14867.31467.43567.74367.74167.84468.037KIRKO2_013366.64466.91667.09367.12167.24967.73367.78567.92668.037KIRVO2_013766.64466.91667.09367.12167.22167.24267.24067.50367.78567.92668.037KIRVO2_0127ND66.64466.9867.03667.13167.20267.27167.42467.50467.505KIRVO2_006566.02166.3966.0866.0866.74166.78466.79466.77467.505KIRVO2_200065.88765.68565.7776.5265.8765.7966.73166.74466.72466.70566.707KIRVO3_200065.88765.7965.8765.8765.8765.7965.1266.20865.06965.06965.06965.06965.06965.06965.06965.06965.079<	KIRK02 0403	67.255	67.343	67.374	67.475	67.578	67.701	67.912	68.027		68.116
KIRKQ.2013366.64466.64667.09367.21667.24967.32967.78567.78567.78566.78566.807KIRQ.2017366.64466.8967.0367.1167.0267.2167.42467.50467.515KIRKQ.200766.64066.8967.0567.3167.0267.2167.42467.50467.515KIRKQ.200066.2066.5366.5866.5866.5866.5866.5866.5866.5866.5866.5966.5066	KIRK02 0266	66.907	67.145	67.314	67.435	67.545	67.671	67.894	68.003		68.067
KN2Q_133BU66.64466.6967.09367.21467.20367.72467.72467.72667.73567.737KN2Q_1127MD66.64466.8967.30567.31167.20267.21267.42467.50467.535KNRQ_100066.81366.8965.8066.53866.62466.23166.3366.3466.37466.37466.378KNRQ_200065.88766.64466.24666.3166.3366.3466.37466.37866.37866.378KNRQ_200064.79564.91364.9464.92664.38364.06363.77665.74966.37865.76765.74965.76765.74765.74966.37865.76765.74865.76765.74865.76765.74865.77565.73765.74365.74765.74565.72765.74765.74565.74	KIRK02 0133	66.644	66.916	67.093	67.216	67.349	67.503	67.785	67.926		68.037
KN2_0127BD 66.644 66.89 67.036 67.131 67.202 67.271 67.424 67.504 67.565 KIRK0_0127 66.644 66.89 66.58 66.588 66.644 66.744 67.874 67.744 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 67.745 66.244 66.878 66.39 66.308 66.388 66.308 66.308 66.304 66.303 66.304 66.303 66.304 66.303 66.304 66.303 </td <td>КI02 0133BU</td> <td>66.644</td> <td>66.916</td> <td>67.093</td> <td>67.216</td> <td>67.349</td> <td>67.503</td> <td>67.785</td> <td>67.926</td> <td></td> <td>68.037</td>	КI02 0133BU	66.644	66.916	67.093	67.216	67.349	67.503	67.785	67.926		68.037
KIRV02_0127 66.644 66.89 67.036 67.036 67.036 67.036 66.734 66.734 66.734 66.734 66.737 67.56 KIRV02_0000 65.87 66.38 66.58 66.63 66.33 66.34 66.37 66.378 66.974 KIRV02_0000 65.82 65.685 65.757 65.757 65.757 65.757 65.32 66.125 66.438 64.497 64.326 KIRV03_1000 66.376 63.34 64.349 64.38 64.38 64.36 64.497 64.326 KIRV03_1000 60.636 62.627 62.026 62.029 62.026 62.026 62.026 62.026 62.025 62.026 62.026 62.025 62.026 62.026 62.025 62.026	KI02 0127BD	66.644	66.89	67.036	67.131	67.202	67.271	67.424	67.504		67.56
NIRKQ2_0065 66.201 66.308 66.666 66.764 66.878 66.6974 66.378 NIRKQ2_0000 66.587 66.194 66.214 66.3 66.378 66.378 66.378 NIRKQ3_2000 66.552 65.582 65.577 755.82 65.775 66.125 66.248 66.304 NIRKQ3_1000 66.4175 64.285 64.489 64.303 65.035 65.026 62.848 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.841 62.345 62.945 62.345 62.945 62.345 62.945 62	KIRK02 0127	66.644	66.89	67.036	67.131	67.202	67.271	67.424	67.504		67.56
NIRK02_000 65.887 66.08 66.194 66.201 66.331 66.341 66.347 Interpolated reach Interpolated reach Interpolated reach Interpolated reach Interpolated reach KIRK03_2000 66.528 65.657 65.52 65.857 65.857 65.857 66.125 66.324 66.303 KIRK03_2000 64.795 64.133 64.349 64.318 64.388 65.033 65.025 65.026 65.032 KIRK03_1800 63.386 62.343 62.357 62.668 62.705 62.881 62.916 61.723 61.827 62.881 62.925 62.881 62.925 62.881 62.925 62.881 62.925 62.925 62.925 62.925 62.925 62.925 62.925 62.925 62.925 62.925 62.925 62.926 62.925 62.926 62.925 62.926 62.925 62.926 62.925 62.926 62.925 62.926 62.925 62.926 62.926 62.926 62.926 62.926 <t< td=""><td>KIRK02 0065</td><td>66.201</td><td>66.395</td><td>66.508</td><td>66.588</td><td>66.666</td><td>66.744</td><td>66.878</td><td>66.994</td><td></td><td>67.105</td></t<>	KIRK02 0065	66.201	66.395	66.508	66.588	66.666	66.744	66.878	66.994		67.105
Interpolated reach Construction KIRK000000	KIRK02_0000	65.887	66.084	66,194	66.261	66.3	66.331	66.344	66.347		66.378
KIKK03_200065.58265.68565.76765.8265.87265.97966.15266.24866.304KIRK03_200064.79564.91364.94464.96264.98366.03065.03965.05065.039KIRK03_160064.016564.28564.28664.28664.28664.26662.70562.81262.92962.125KIRK03_140066.35561.75561.73561.81561.73561.81561.73562.88461.97262.05662.02062.125KIRK03_120060.73560.90560.90661.02760.24460.92960.41360.44760.479KIRK03_080059.91260.97159.38659.83759.42459.50559.61859.61859.648KIRK03_040059.12059.38659.38759.42459.50557.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.87857.257	Interpolated reach										
KIRK03_2000 64.795 64.913 64.942 64.982 65.003 65.013 65.026 65.026 KIRK03_1800 64.005 64.173 64.284 64.284 64.318 64.364 64.328 64.318 64.364 65.026 63.742 63.742 63.775 KIRK03_1400 62.366 62.543 62.637 62.666 62.706 62.972 62.881 62.918 62	KIRK03 2200	65 582	65.685	65,767	65.82	65 872	65,979	66,152	66.248		66.304
KIRK03_1600 64.005 64.025 64.284 64.284 64.318 64.326 64.243 64.326 64.327 64.228 64.316 61.233 61.268 61.233 61.268 61.323 61.268 61.323 61.268 69.011 60.447 60.479 KIRK03_0800 59.916 59.271 59.387 59.424 59.505 59.586 59.591 59.586 59.587 58.386 58.612 58.707 58.788 58.845 58.906 KIRK03_0200 58.297 56.323 57.002 57.088 57.128 57.206 57.257 57.486 KIRK01_0984 56.677 56	KIRK03_2000	64 795	64 913	64 944	64 962	64 983	65 003	65 019	65 026		65.039
KIRK03_160 63.186 63.23 63.24 63.23 63.23 63.23 63.23 63.23 63.23 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 63.73 63.25 62.255 62.81 62.918<	KIRK03_1800	64 005	64 173	64 258	64 289	64 318	64 398	64 466	64 497		64 526
NRR03_140062.36862.36362.6362.6362.70562.70562.88162.91862.91862.918KIRK03_120066.75161.72361.81561.81561.82361.92262.05662.09262.125KIRK03_00060.73260.09661.02661.02661.03361.13561.23361.64460.479KIRK03_060059.92260.87159.35859.38759.42459.50559.58659.61859.664KIRK03_040059.22759.35859.38757.72557.78857.87857.87857.87857.878KIRK03_040056.27757.84457.7257.77857.87857.87857.87857.87857.878KIRK01_098456.67756.85456.93557.00257.68857.12857.20557.25757.486KIRK01_098456.67756.85456.39356.41856.50756.5856.67956.73757.070KIRK01_098455.98756.23856.33956.41856.50756.5856.67956.73757.4766KIRK01_0879055.98956.1456.21756.3156.34556.37656.39756.496KIRK01_075755.20855.31555.34555.34155.34555	KIRK03_1600	63 186	63 364	63 459	63 491	63 53	63.62	63 706	63 742		63 775
NIRK03_1200 61.551 61.723 61.835 61.030 61.032 61.032 61.032 61.032 61.033 61.032 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 61.13 61.033 60.011 60.047	KIRK03_1400	62 368	62 5/13	62 637	62 668	62 706	62 795	62 881	62 918		62.95
NIRRO3_100 G0.735 G0.905 G0.905 <thg0.905< th=""> <thg0.905< th=""> <thg0.905< td=""><td>KIRK03_1400</td><td>61 551</td><td>61 723</td><td>61 815</td><td>61 847</td><td>61 884</td><td>61 972</td><td>62.001</td><td>62.092</td><td></td><td>62 125</td></thg0.905<></thg0.905<></thg0.905<>	KIRK03_1400	61 551	61 723	61 815	61 847	61 884	61 972	62.001	62.092		62 125
N.R.RX03_0600 100.757 60.037 60.037 60.024 60.125 60.126 60.126 60.127 60.126 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 60.127 50.126 50.127 50.126 50.137 50.107 50.107 50.107 50.107 50.107 50.107 <th< td=""><td>KIRK03_1000</td><td>60 735</td><td>60 905</td><td>60.996</td><td>61.076</td><td>61.063</td><td>61 15</td><td>61 233</td><td>61 268</td><td></td><td>61.3</td></th<>	KIRK03_1000	60 735	60 905	60.996	61.076	61.063	61 15	61 233	61 268		61.3
N.R.R.O3_0000 15.10 50.17 50.18 50.18 50.18 50.18 50.18 50.18 50.18 50.18 50.17	KIRK03_1000	59.92	60.087	60 177	60 207	60 244	60 329	60 /11	60 447		60 479
Ninkojobi DSLOB	KIRK03_0600	59 106	59 271	59 358	59 387	59 / 2/	59 505	59 586	59 618		59.6/6
KIRK03_0200 57.481 57.644 57.727 57.737 57.737 57.738 57.898 57.206 57.257 57.486 KIRK01_0879U 55.987 56.238 56.339 56.418 56.507 56.58 56.679 56.737 57.07 KI01_0879BU 55.939 56.144 56.214 56.257 56.31 56.345 56.397 56.496 56.737 55.698 55.6179 55.301 55.323 55.626 55.301 55.323 55.6262 55.498 55.145 55.478 55.999 55.145 55.618 56.397 55.498 55	KIRK03_0400	58 292	58 / 52	58 545	58 58	58 612	58 705	58 784	58 845		58.906
Kinkologob Sind Si	KIRK03_0200	57 /81	57.644	57.72	57 737	57 785	57 838	57 878	57 895		57.861
KIRK01_098456.67756.85456.93557.00257.06857.12857.20657.25757.486KIRK01_0984d56.67756.85456.93557.00257.06857.12857.20657.25757.486KIRK01_0879U55.98756.23856.33956.41856.50756.5856.67956.73757.07KI01_0879BU55.98756.23856.33956.41855.50756.3156.34556.37656.39757.07KI01_0875BD55.93956.14456.21456.25756.3156.34556.37656.39756.496KIRK01_075755.20855.31555.33655.36155.38155.41555.47855.49955.622KIRK01_0653u54.69754.69254.77754.82454.88754.96355.0955.13155.14555.474KIRK01_0553U54.60754.69254.77754.82454.99155.13155.19455.13155.19455.561KIRK01_0553D54.60354.68454.79454.84654.91554.99855.13155.19455.566KIRK01_037853.42353.61853.09955.13155.19455.56655.56655.361 <td>End of interpolated reach</td> <td>57.401</td> <td>57.044</td> <td>57.72</td> <td>57.757</td> <td>57.705</td> <td>57.050</td> <td>57.070</td> <td>57.655</td> <td></td> <td>57.001</td>	End of interpolated reach	57.401	57.044	57.72	57.757	57.705	57.050	57.070	57.655		57.001
KIRK01_0984d56.67756.85450.50557.02057.12857.12657.12657.12657.126KIRK01_09879U55.98756.23856.33956.41856.50756.5856.67956.73757.070KI01_0879BU55.98756.23856.33956.41856.50756.5856.67956.73757.070KI01_0875BD55.93956.14456.21456.25756.3156.34556.37656.39756.496KIRK01_0879D55.93956.14456.21456.25756.3155.43556.37655.99756.496KIRK01_0653u54.97955.11555.14555.36155.37855.20855.23355.62KIRK01_0653d54.66754.69254.77754.82454.89754.99355.13155.19455.561KIRK01_0553D54.50354.68454.79454.84654.91554.99855.13155.19455.561KIRK01_0553D54.50354.6854.78754.83854.90754.99155.1355.19255.56KIRK01_037853.42353.61853.6953.76153.81453.86753.99853.99354.227KIRK01_0553D54.50354.68354.78754.83854.90754.99155.1355.19255.56KIRK01_010952.45452.60352.66352.71952.76952.81752.85352.85252.941KIRK01_0096BD52.45452.60352.66352.719<	KIRKO1 0984	56 677	56 854	56 935	57 002	57.068	57 128	57 206	57 257		57 486
INRK01_0879U55.08756.2856.32856.33956.41856.50751.16351.16351.16351.163KIRK01_0879D55.98756.23856.33956.41856.50756.5856.67956.73757.07KI01_0875BD55.93956.14456.21456.25756.3156.34556.37656.39756.496KIRK01_0879D55.93956.14456.21456.25756.3156.34556.37656.39756.496KIRK01_075755.20855.31555.33655.36155.38155.41555.47855.49955.622KIRK01_0653u54.69755.11555.14555.17455.17855.21655.30155.32355.622KIRK01_0553U54.50354.68454.77754.82454.99855.13155.19455.561KIRK01_0553D54.50354.6854.79454.84654.91554.99855.13155.19255.56KIRK01_037853.42353.61853.69953.76154.89153.99155.13255.19255.56KIRK01_037852.45452.60352.66352.71952.76952.81752.85352.85252.941KIRK01_019952.45452.60352.66352.71952.76952.81752.85352.85252.941KIRK01_0096D52.43852.58152.63952.74952.87752.82152.82252.85852.858KIRK01_0096L52.43852.58152.639<	KIRK01_0984d	56.677	56.854	56,935	57.002	57.068	57.128	57,206	57.257		57,486
KINK01_0579D50.12550.12550.53750.12550.53750.73757.70KI01_0879BU55.98756.23856.33956.41456.25756.3156.34556.37656.39756.496KIRK01_0879D55.93956.14456.21456.25756.3156.34556.37656.39756.496KIRK01_075755.20855.31555.33655.36155.38155.41555.47855.49955.622KIRK01_0653u54.66754.69254.77754.82454.88754.96355.0955.14555.449KIRK01_0553U54.68754.69254.77754.82454.88754.99855.13155.14955.561KIRK01_0553U54.68454.79454.84654.91554.99855.13155.19255.561KIRK01_0553D54.68354.78754.88854.90754.99155.1355.19255.56KIRK01_0553D54.68454.78754.83854.90754.99155.1355.19255.56KIRK01_024152.73252.94253.03253.10953.17953.24953.42353.44954.057KIRC01_009652.43852.68152.69352.71952.76952.81752.85352.85252.91KIRK01_009652.43852.8152.63352.71952.76952.81752.85352.85252.941KIRK01_009652.43852.8152.63352.71952.78752.82152.8225	KIRK01_0879U	55 987	56 238	56 339	56 418	56 507	56 58	56 679	56 737		57.07
INDOF35DISENS <td>KI01_0879BU</td> <td>55.987</td> <td>56 238</td> <td>56 339</td> <td>56 418</td> <td>56 507</td> <td>56 58</td> <td>56 679</td> <td>56 737</td> <td></td> <td>57.07</td>	KI01_0879BU	55.987	56 238	56 339	56 418	56 507	56 58	56 679	56 737		57.07
NRD_001301S0.144S0.144S0.144S0.144S0.144S0.144S0.145S	KI01_0875BD	55.939	56 144	56 214	56 257	56 31	56 345	56 376	56 397		56 496
KIRK01_0553SolititiSoli	KIRK01 0879D	55.939	56 144	56 214	56 257	56 31	56 345	56 376	56 397		56 496
KIRK01_0530D51.103D51.103D51.103D51.103D51.103KIRK01_0653054.97955.11555.14555.17455.17855.21655.30155.32355.62KIRK01_0653054.66754.69254.77754.82454.88754.96355.0955.14555.445KIRK01_0553U54.50354.68454.79454.84654.91554.99855.13155.19455.561KI01_0553BU54.50354.68454.79454.84654.91554.99855.13155.19455.561KIRK01_0553D54.50354.6854.78754.83854.90754.91155.1355.19255.56KIRK01_0573D54.50354.6854.78754.83854.90754.91155.1355.19255.56KIRK01_037853.42353.61853.69953.76153.81453.86753.99853.99354.227KIRK01_010952.45452.60352.66352.71952.76952.81752.85352.85252.941KI01_0096BD52.45452.60352.66352.71952.76952.81752.82152.8252.858KIRK01_009652.43852.58152.63952.69352.7452.78752.82152.8252.858KIRK01_009652.43852.58152.69352.7452.78752.82152.8252.858KIRK01_009652.34852.43652.48552.5552.5152.5352.5352.5352.53	KIRK01_0757	55.333	55 315	55 336	55 361	55 381	55 415	55 478	55 499		55 692
KIRK01_0553d53.11353.11353.11455.13155.19455.13155.19455.561K101_0553BU54.50354.68454.79454.84654.91554.99855.13155.19255.566K1RK01_0553D54.50354.6854.78754.83854.90754.91155.1355.19255.56K1RK01_037853.42353.61853.69953.76153.81453.86753.99853.99354.227K1RK01_024152.73252.94253.03253.10953.17953.24953.42353.44954.566K1RK01_010952.45452.60352.66352.71952.76952.81752.85352.85252.941K101_0096BD52.45452.60352.66352.71952.76952.81752.82152.8252.858K1RK01_009652.43852.58152.63952.69352.7452.78752.82152.8252.858K1RK01_009652.43852.43652.46352.45552.5152.5152.5352.5352.5352.838K1RK01_0092U52.34852.43652	KIRK01_0653u	54 979	55 115	55.330	55.501	55.301	55 216	55 301	55 323		55.62
KIRK01_0553U54.63454.8454.84654.91554.93855.13155.194KIRK01_0553BU54.50354.68454.79454.84654.91554.99855.13155.19455.661KIO1_0553BD54.50354.68454.79454.84654.91554.99855.13155.19455.661KIRK01_0553BD54.50354.6854.78754.83854.90754.99155.1355.19255.56KIRK01_0553D54.50354.6854.78754.83854.90754.99155.1355.19255.56KIRK01_037853.42353.61853.69953.76153.81453.86753.99853.99354.227KIRK01_024152.73252.94253.03253.10953.17953.24953.42353.44954.056KIRK01_010952.45452.60352.66352.71952.76952.81752.85352.85252.941KI01_0096BD52.45452.60352.66352.71952.76952.81752.82152.8252.858KIRK01_009652.43852.58152.63952.69352.7452.78752.82152.8252.858KIRK01_009652.43852.58152.63952.64352.7452.78752.82152.8252.858KIRK01_009652.43852.43652.46552.5552.5152.5352.5352.5352.53KIRK01_0092U52.34852.43652.46552.45552.5152.51 <td>KIRK01_0653d</td> <td>54 667</td> <td>54 692</td> <td>54 777</td> <td>54 824</td> <td>54 887</td> <td>54 963</td> <td>55.09</td> <td>55 145</td> <td></td> <td>55 494</td>	KIRK01_0653d	54 667	54 692	54 777	54 824	54 887	54 963	55.09	55 145		55 494
KIN1_0553BU54.6354.68454.79454.84654.91554.93655.13155.19455.66KI01_0553BD54.60354.6854.79754.83854.90754.99155.1355.19255.56KIRK01_0553D54.50354.6854.78754.83854.90754.99155.1355.19255.56KIRK01_037853.42353.61853.69953.76153.81453.86753.99853.99354.227KIRK01_024152.73252.94253.03253.10953.17953.24953.42353.44954.056KIRK01_010952.45452.60352.66352.71952.76952.81752.85352.85252.941KI01_0109BU52.45452.60352.66352.71952.76952.81752.85352.85252.941KI01_0096BD52.43852.58152.63952.69352.7452.78752.82152.8252.858KIRK01_009652.43852.58152.63952.69352.7452.78752.82152.8252.858KIRK01_009652.34852.43652.46352.45552.5152.5152.5352.53352.83352.838KIRK01_0092U52.34852.43652.46552.45552.5152.5152.5352.53352.53352.533	KIRK01_0553U	54,503	54.684	54,794	54.846	54,915	54,998	55,131	55,194		55,561
KIGL_0553BD 54.68 54.787 54.838 54.907 54.911 55.131 55.192 55.56 KIRK01_0553D 54.503 54.68 54.787 54.838 54.907 54.911 55.13 55.192 55.56 KIRK01_0553D 54.503 54.68 54.787 54.838 54.907 54.911 55.13 55.192 55.56 KIRK01_0378 53.423 53.618 53.699 53.761 53.814 53.867 53.998 53.993 54.227 KIRK01_0241 52.732 52.942 53.032 53.109 53.179 53.249 53.423 53.449 54.056 KIRK01_0109 52.454 52.603 52.663 52.719 52.769 52.817 52.853 52.852 52.941 KI01_0109BU 52.454 52.603 52.663 52.719 52.769 52.817 52.853 52.852 52.941 KI01_0096BD 52.454 52.603 52.693 52.74 52.787 52.821 52.82 52.858 <td>KI01_0553BU</td> <td>54 503</td> <td>54 684</td> <td>54 794</td> <td>54 846</td> <td>54 915</td> <td>54 998</td> <td>55 131</td> <td>55 194</td> <td></td> <td>55 561</td>	KI01_0553BU	54 503	54 684	54 794	54 846	54 915	54 998	55 131	55 194		55 561
KIRK01_0553D 54.68 54.787 54.838 54.907 54.917 55.13 55.192 55.56 KIRK01_0573D 53.423 53.618 53.699 53.761 53.814 53.867 53.998 53.993 54.227 KIRK01_0241 52.732 52.942 53.032 53.109 53.179 53.243 53.449 54.056 KIRK01_0109 52.454 52.603 52.663 52.719 52.769 52.817 52.853 52.852 52.941 KI01_0109BU 52.454 52.603 52.663 52.719 52.769 52.817 52.853 52.852 52.941 KI01_0096BD 52.454 52.603 52.663 52.719 52.769 52.817 52.852 52.852 52.941 KI01_0096BD 52.454 52.603 52.663 52.749 52.787 52.821 52.82 52.858 KIRK01_0096 52.438 52.581 52.633 52.74 52.787 52.821 52.82 52.858 KIRK01_0092	KI01_0553BD	54 503	54.68	54 787	54.838	54 907	54 991	55 13	55 192		55 56
KIRK01_0550 D5130 D5130 D5131 D5151 D5151 <thd511< th=""> D5151 D5151</thd511<>	KIRK01 0553D	54 503	54.68	54.787	54.838	54 907	54 991	55.13	55 192		55.56
KIRK01_05/0 53.425 53.616 53.617 53.617 53.637 53.535 52.545 </td <td>KIRK01_0378</td> <td>53 /23</td> <td>53 618</td> <td>53 699</td> <td>53 761</td> <td>53.81/</td> <td>53 867</td> <td>53 998</td> <td>53 993</td> <td></td> <td>54 227</td>	KIRK01_0378	53 /23	53 618	53 699	53 761	53.81/	53 867	53 998	53 993		54 227
KIRK01_0L941 52.852 52.852 53.145 5	KIRK01_02/1	52 732	52 9/2	53.032	53 109	53 179	53 2/19	53.000	53 1/9		54.056
KINK1_0109BU 52.454 52.603 52.633 52.719 52.769 52.817 52.853 52.852 52.814 KI01_0109BU 52.454 52.603 52.663 52.719 52.769 52.817 52.853 52.852 52.941 KI01_0096BD 52.438 52.581 52.639 52.693 52.74 52.787 52.821 52.82 52.858 KIRK01_0096 52.438 52.581 52.639 52.693 52.74 52.787 52.821 52.82 52.858 KIRK01_0096 52.348 52.436 52.463 52.463 52.74 52.787 52.821 52.82 52.858 KIRK01_0092U 52.348 52.436 52.465 52.55 52.51 52.53 52.533 52.533 52.533	KIRK01_0109	52.752	52.542	52 663	52 719	52 769	52 817	52 853	52 852		52 9/1
KI01_0096BD 52.438 52.581 52.639 52.74 52.787 52.821 52.822 52.858 KIRK01_0096 52.438 52.581 52.639 52.74 52.787 52.821 52.822 52.858 KIRK01_0096 52.348 52.581 52.639 52.693 52.74 52.787 52.821 52.82 52.858 KIRK01_0092U 52.348 52.436 52.465 52.55 52.51 52.536 52.533 52.533 52.533	KINK01_0109BU	52.454	52.003	52.663	52.719	52.769	52.817	52.055	52.052		52.941
KIRK01_0096 52.348 52.581 52.639 52.74 52.74 52.821 52.82 52.858 KIRK01_0092U 52.348 52.436 52.436 52.436 52.436 52.435 52.52 52.51 52.821 52.822 52.858	KI01_0096BD	52.434	52.005	52.005	52.713	52.705	52.017	52.000	52.052		52.541
KIRK01_0092U 52.348 52.436 52.436 52.436 52.436 52.53 52.51 52.52 52.53	KIBK01 0096	52.430	52.501	52.039	52.035	52.74	52.787	52.021	52.02		52.030
52.55 CF.3C	KIRK01_0092U	52.430	52.501	52.039	52.095	52.74	52.707	52.021	52.02		52.030
	KI01_0092BU	52.340	52.430	52.40	52.405	52.5	52.51	52.530	57 523		52.55
Jobson Jobson <thjobson< <="" td=""><td>KI01_0092BD</td><td>52.340</td><td>52.430</td><td>52.40</td><td>52.405</td><td>52.5</td><td>52.51</td><td>52.530</td><td>52.555</td><td></td><td>57 572</td></thjobson<>	KI01_0092BD	52.340	52.430	52.40	52.405	52.5	52.51	52.530	52.555		57 572
Xi01_002D 52.390 52.490 52.490 52.493 52.503 52.531 52.521 52.5	KIRK01 009200	52.540	52.430	52.40	52.404	52.433	52.509	52.333	52.331		52.520
KIRK01 0000 51 584 51 745 51 808 51 851 51 886 51 917 52 019 52 018 52 163	KIRK01_0000	51 52/	51 745	51 808	51 851	51 886	51 917	52.000	52.551		52.528

Cross Sections

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number 100016994.

CROSS SECTION LOCATION PLAN 5 LOWER DALBEATTIE REACH OF KIRKGUNZEON LANE

Contains Ordnance Survey data © Crown copyright and database right 2016 OS MasterMap licence number 100016994.

Cross Sections

LEGEND

F Appendix **F** - Properties at risk

Table F-1: Key to properties at risk

No flooding to properties	
Flooding below threshold level (sub floor level, -0.3- 0.0m)	-0.10
Flooding above threshold level	0.15

Table F-2: Properties at risk of flooding and depths for range of flood events modelled

Property address	MCM code	10-yr	25-yr	50-yr	100-yr	200-yr	200-yr CC	1000yr
6 PARK TERRACE	122						-0.17	-0.17
7 PARK TERRACE	122						-0.21	-0.20
12 PARK TERRACE	122						-0.05	-0.02
19 JOHN STREET	131							-0.24
21 JOHN STREET	131							-0.15
22 JOHN STREET	131							-0.12
23 JOHN STREET	131							-0.28
13 JOHN STREET	131							-0.22
14 JOHN STREET	131							-0.17
15 JOHN STREET	131							-0.17
16 JOHN STREET	131							-0.17
10 JOHN STREET	131							-0.29
12 JOHN STREET	131							-0.18
MAIDENHOLM FORGE MILL	111						0.03	0.07
52 HIGH STREET	3							-0.05
52 HIGH STREET	3							-0.06
46 HIGH STREET	2							-0.17
44 HIGH STREET	2							-0.19
M. Mc Cowan & Son shop	2							-0.09
FLAT 3	2						-0.23	0.01
37 HIGH STREET	131						-0.21	0.01
35 HIGH STREET	2						0.01	0.22
33 HIGH STREET	131						0.04	0.22
31 HIGH STREET	3						-0.01	0.17
29 HIGH STREET	2						-0.08	0.11
21 HIGH STREET	131						0.11	0.28
DALBEATTIE LIBRARY	6						0.08	0.27
ISLECROFT GARAGE	2							-0.26
ISLECROFT GARAGE	2						0.21	0.37
ISLECROFT GARAGE	2							-0.20
24 HIGH STREET	2						0.08	0.23
26 HIGH STREET	2						0.20	0.35
32C HIGH STREET	2						0.02	0.17
32 HIGH STREET	2						0.09	0.25
CROWN HOTEL	51						-0.09	0.06
40 HIGH STREET	2							0.00
GARAGE 1	8							0.07
BURNBANK COTTAGE	2							0.11
28 HIGH STREET	2						0.15	0.30
A	2						0.30	0.45

14 HIGH STREET	2						0.17	0.32
19 HIGH STREET	131						0.12	0.29
12 HIGH STREET	2						0.15	0.29
17 HIGH STREET	2						0.19	0.36
15 HIGH STREET	2						0.37	0.53
15A HIGH STREET	111						0.47	0.64
BRIG'EN	121						0.37	0.54
DALBEATTIE BOWLING CLUB	6						-0.12	0.12
THE MECHANICS INSTITUTE	3						-0.23	0.01
8 BURN STREET	131							-0.13
6 BURN STREET	131							-0.07
4 BURN STREET	131							-0.10
2 BURN STREET	131							0.31
2A BURN STREET	131							0.11
66 HIGH STREET	3							0.02
64 HIGH STREET	2							-0.01
62 HIGH STREET	2							-0.18
56-60 HIGH STREET	2							0.20
ISLECROFT GARAGE	2						0.23	0.37
LINTONGIL	111							-0.07
1 THE FLATTS	131							-0.15
DUNIRA	131							-0.11
4 BEECH GROVE	128							-0.25
3 BEECH GROVE	128							-0.22
FERGUSLEA	111						0.54	0.66
DALBEATTIE AND DISTRICT DAY CENTRE	6						0.13	0.26
BURNSIDE HOTEL	51	0.10	0.19	0.24	0.27	0.34	0.42	0.50
WATERSIDE	111	-0.09	-0.04	0.00	0.03	0.09	0.17	0.25
8 PARK TERRACE	122					-0.03	0.03	0.06
MUNCHES PARK HOUSE	6	0.03	0.11	0.14	0.16	0.20	0.24	0.28
9 PARK TERRACE	122				-0.16	-0.15	-0.13	-0.11
11 PARK TERRACE	122						-0.18	-0.13
10 PARK TERRACE	122				-0.26	-0.25	-0.23	-0.18
2 GLENAIRLIE TERRACE	123					-0.23	-0.18	-0.13
1 GLENAIRLIE TERRACE	123				-0.21	-0.13	-0.06	-0.01
3 GLENAIRLIE TERRACE	123						-0.30	-0.27
4 GLENAIRLIE TERRACE	123				-0.24	-0.19	-0.15	-0.11
8 BARHILL CRESCENT	118					-0.26	-0.23	-0.20
1 BARHILL CRESCENT	118				-0.23	-0.21	-0.19	-0.18
6 GLENAIRLIE TERRACE	123						-0.29	-0.28
20 QUEEN'S GROVE	123							-0.30
19 QUEEN'S GROVE	123							-0.29
11 QUEEN'S GROVE	123							-0.29
7 QUEEN'S GROVE	123					-0.29	-0.20	-0.15
8 QUEEN'S GROVE	123					-0.15	-0.08	-0.04
MIROMAR	123					0.64	0.71	0.75
10 QUEEN'S GROVE	123					-0.25	-0.16	-0.12
WAIERWHEEL	111	1			-0.14	-0.09	0.03	0.13

JBA consulting

G Appendix G - Natural Flood Management Report

G.1 Natural Flood Management (NFM) Report, 2015

H Appendix H - Economic Appraisal Results

	Proje	ct Summary	Sheet		
Client/Authority				Prepared (date)	
Dumfries and Galloway Council				Printed	04/08/2016
Project name				Prepared by	0
Dalbeattie FPS Appraisal				Checked by	
Project reference		2015s2898		Checked date	
Rase date for estimates (year ())		Sen-2015		Offeetice date	
Section factor (a g fm fk f)		660-2010 fk	(upod for all costs	lossos and hone	ofita)
Voor		0	30	75	1115)
Teal Discount Data		2 59/	2 0.0%	2 5 09/	
Discount Rate		5.5% 60%	3.00%	2.30%	
Costs and bonafits of ontions		00%			
Costs and benefits of options					
		Costs and	benefits £k		
Option name	Do Minimum	Option 1 (PLP)	Option 2 (Raised defence)	Do Minimum with climate change	Option 3 (Raised defence) incorporating Climate Change
COSTS:					
PV capital costs	0	179	331	0	424
Optimism bias adjustment	0	107	199	0	254
Total PV Costs £k excluding contributions	0	286	530	0	678
BENEFITS:					
Total monetised PV damages £k	1,322	210	210	1,609	274
Total monetised PV benefits £k		1,112	1,112		1,335
PV damages (from scoring and weighting)			<u> </u>		
PV damages avoided/benefits (from scoring and weighting)			<u> </u>		
PLP failure adjustment		-111	<u> </u>		
Total PV damages £k	1,322	322	210	1,609	274
Total PV benefits £k		1,001	1,112		1,335
DECISION-MAKING CRITERIA:					
excluding contributions					
Based on total PV benefits (in cludes benefits from scoring an	nd weighting and	ecosystem servi	ces)		
Net Present Value NPV		/14	582	L	657
Average benefit/cost ratio BCR		3.5	2.1		2.0
Incremental benefit/cost ratio IBCR			0.5		1.5
		Highest bcr			
Brief description of options:	5 M 1				
Option 1	Do Minimum				
Option 2	Option 1 (PLP)				
Option 3	Option 2 (Raised	defence)			
Option 4	Do Minimum with	climate change			
Option 5	Option 3 (Raised	defence) incorpor	ating Climate Char	nge	
Comments and assumptions:					

	Summary Annual Average Damage Sheet Nr.												
Client/Authority Dumfries and Galloway Council													
Project name	oject name Option:												
Dalbeattie FPS Appraisal		2015-2202		Do	nothing								
Base date for estimates (year 0)	se date for estimates (year 0) 42248 First year of damage: 0 Prepared (date)												
Scaling factor (e.g. £m, £k, £)		£k		La	st year of perio	od:		99 Pr	inted		04/08/2016		
Discount rate		3.5%		PV	factor for mid	l-year 0:		29.813 Pr	epared by		0		
Applicable year (if time yarving)						Checked by							
Applicable year (in time varying)			Average	waiting time	(yrs) betweer	n events/frequ	ency per yea				Total PV		
	1	1	2	10	25	50	100	200	1000	Infinity	£k		
	1.000	1.000	0.500	0.100	0.040	0.020	0.010	0.005	0.001	0			
Direct Damage category	0	0	0	2	Damage :	£k	17	67	427	517	66		
Ind/commercial (direct)	0	0	0	179	277	329	349	390	1150	1340	1942		
Indirect Damage category		L			Damage	£k							
Ind/comm (indirect)	0	0	0	5	8	10	10	12	35	40	58		
I raffic related	0	0	0	0	0	0	2	7	46	0 55	0		
Vehicle Damage	0	0	0	0	0	0	0	3	26	32	3		
Evacuation / Temp Accom.	0	0	0	0	0	0	0	0	0	0	0		
Tatal dama na Oli						10	10	01	100	0	0		
I otal damage £k	0	0	0	6 11	8 0.4	10	12	21	106	127			
, nou (uumugo, noquonoj)		0.0	0.0		0.1	012	0.1	0.1	0.0	0.1			
Present value (assuming no change	ge in damage	or event freque	ncy)			2008	67.4	DIV					
Capped PVd (direct property dam)	age) from prev	lous sneet				-812	40.1 (no	DI)					
oneok offit va capping						012							
Total area, indirect damages						2							
Present value (assuming no chang	ge in damage	or event freque	ncy)			68							
Intangible AAD (Low Estimate (£2	86/vr)					2							
Intangible AAD (High Estimate (£2	2513/yr)					17							
Intangible PVd (Low Estimate)						58							
Intangible PVd (High Estimate)						510							
Total Present Value (assuming no	change in da	mage or event f	req.)			1322	44.4				2076		
Notes	U	0	17										
Area calculations assume drop to	zero at maxim	num frequency.											
Default value for the highest poss	ible damage a	ssumes continu	ation of gradie	nt for last two	points, an alt	ernative value	can						
One form should be completed for	each option	including 'witho	ut project' and	for each rep	esentative ve	ar if profile ch	anges						
during scheme life (e.g. sea-level	rise)												
Residential property, Industrial / c	ommercial (dir	rect), and Other	damages are i	temised in As	set AAD shee	et and automat	tically linked						
to this sheet													
Projec	t: Dalbeatt	ie FPS Appr	aisal			On	tion: Do n	othing					
		ie i i e i pp.				••		5					
Domogo fk													
Damage £K													
2500 -													
2000 +													
\backslash													
1500 + \													
1000													
1000 +													
1000 -													
1000 -													
500 -													
500 -													
500 -													
	05	0.010	0.015	0.	020	0.025	0.0)30	0.035		0.040		
	05	0.010	0.015	0. Frequer		0.025	0.0)30	0.035		0.040		

			Sł	neet Nr.								
Client/Authority Dumfries and Galloway Council												
Project name Dalbeattie FPS Appraisal				Option: Option 1 (PLP)								
Project reference		2015s2898		_		/						
Base date for estimates (year 0) Scaling factor (e.g. £m. £k. £)		42248 £k		Fi	rst year of da ast vear of pe	amage: eriod:		0 Pr 99 Pr	epared (date) inted		00/01/1900	
Discount rate		3.5%		P'	V factor for n	nid-year 0:		29.813 Pr	epared by		0	
Applicable year (if time varving)								Ch	necked by necked date		0	
rippiloabio your (ir timo varying)			Averag	e waiting tim	e (yrs) betwe	en events/frec	uency per yea	ar			Total PV	
	1 1 000	1 1 000	2 0.500	10 0 100	25 0.040	50 0.020	100	200	1000	Infinity 0	£k	
Direct Damage category	1.000	1.000	0.000	0.100	Damag	le £k	0.010	0.000	0.001	0		
Residential property	0	0	0	0	0	0	2	67	427	517	49 158	
Indirect Damage category		0	0	0	Damag	le £k	0	390	1150	1340	100	
Ind/comm (indirect)	0	0	0	0	0	0	0	12	35	40	5	
Emergency services 0.107	0	0	0	0	0	0	0	49	169	199	22	
Vehicle Damage	0	0	0	0	0	0	0	3	26	32	3	
Evacuation / Temp Accom.	0	0	0	0	0	0	0	0	0	0	0	
Total damage £k	0	0	0	0	0	0	0	63	229	271		
Area (damagexfrequency)		0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.2		
Present value (assuming no chang	ge in damage o	or event freque	ency)			207	6.9					
Capped PVd (direct property dama Check on PVd capping	age) nom prev	ous sneet				-52	5.2 (nc) (10 (
Total area, indicast damages												
Present value (assuming no chance	ge in damage o	or event freque	ency)			30						
Intangible AAD (Low Estimate (£2) Intangible AAD (High Estimate (£2)	86/yr) 2513/yr)					1						
Intangible PVd (Low Estimate)	, , ,					26						
Intangible PVd (High Estimate)						232						
Total Present Value (assuming no	change in dar	nage or event	freq.)			210	7.1				237	
Notes Area calculations assume drop to	zero at maxim	im frequency										
Default value for the highest possi	ible damage as	sumes contin	uation of gradie	ent for last tw	o points, an	alternative val	ue can					
be entered, if appropriate.	and ontion i	oludina with	ut project' on	d for each ror	rocontotivo	voor if profile o	hongoo					
during scheme life (e.g. sea-level	rise)	iciuality with	out project, and		Jesenialive	year îr prome c	andiges					
Residential property, Industrial / co	ommercial (dire	ect), and Othe	r damages are	itemised in A	sset AAD sh	neet and autom	natically linked					
to this sheet												
Projec	ct: Dalbeatti	e FPS Appi	raisal			0	ption: Opti	on 1 (PLP)				
Demons Oli												
Damage £K												
2500												
2000 -												
2000												
1500 -												
4000												
1000 +												
500 -												
0 +	1		1		1		1		+			
0.000	0.200		0.400	Eroquia).600	0	.800	1.	000		1.200	
				rieque	псу							
1												

		<u>Summ</u>	nary Annu	ge Dama	nageSheet Nr.								
Client/Authority Dumfries and Galloway Council													
Project name	ject name Option:												
Dalbeattie FPS Appraisal		2015c2808		O	otion 2 (Rais	ed defence)							
Base date for estimates (year 0)	late for estimates (year 0) 42248 First year of damage: 0 Prepare												
Scaling factor (e.g. £m, £k, £)		£k		La	ist year of pe	eriod:		99 Pri	nted		04/08/2016		
Discount rate		3.5%		P١	/ factor for m	nid-year 0:		29.813 Pre	epared by		0		
Applicable year (if time varying)								Ch	ecked date		0		
	_		Averag	e waiting time	e (yrs) betwe	en events/frequ	lency per year				Total PV		
	1 1 000	1	2	10	25	50	100	200	1000	Infinity	£k		
Direct Damage category	1.000	1.000	0.000	0.100	Damag	e £k	0.010	0.000	0.001	0			
Residential property	0	0	0	0	0	0	2	67	427	517	49		
Ind/commercial (direct)	0	0	0	0	0 Domog	0	0	390	1150	1340	158		
Indirect Damage category	0	0	0	0	Damag		0	12	35	40	5		
Traffic related	-		-		-					0	0		
Emergency services 0.107	0	0	0	0	0	0	0	49	169	199	22		
Vehicle Damage	0	0	0	0	0	0	0	3	26	32	3		
Evacuation / Temp Accom.	0	0	U	0	0	0	U	0	0	0	0		
Total damage £k	0	0	0	0	0	0	0	63	229	271			
Area (damagexfrequency)		0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.2			
Present value (assuming no chang	je in damage o	or event freque	ncy)			207	6.9						
Capped PVd (direct property dama	age) from prev	ious sheet				154	5.2 (no	DI)					
Check on PVd capping						-52							
Total area indirect damages						1							
Present value (assuming no change	je in damage o	or event freque	ncy)			30							
Intangible AAD (Low Estimate (£28	36/yr) 513/yr)					1							
Intangible PVd (Low Estimate)	515/yl)					26							
Intangible PVd (High Estimate)						232							
	ahanaa in dae					210	74				007		
Notes	change in dar	hage of event i	req.)			210	7.1				237		
Area calculations assume drop to a	zero at maxim	um frequency.											
Default value for the highest possi	ble damage as	ssumes continu	ation of gradie	ent for last two	o points, an	alternative valu	e can						
be entered, if appropriate.	anah antion i	n al undin a luvith a		l for oosh ron	recentative v	unar if profile ob							
during scheme life (e.g. sea-level)	'each option, i 'ise)	ncluaing witho	ut project, and	nor each rep	resentative	year it prome cr	langes						
Residential property, Industrial / co	ommercial (dire	ect), and Other	damages are	itemised in A	sset AAD sh	eet and automa	atically linked						
to this sheet													
Projec	t. Dalboatti	o EPS Annr	aical			Or	tion: Ontio	n 2 (Raise	ad defence)				
Flojed		e rrs Appl	disdi			OF OF		ni z (raise	eu uelelice)				
Damage £k													
2500 _													
2000 +													
1500 +													
1000 -													
500 -													
0			-		-		+		1				
0.000	0.200	(0.400	_ 0	.600	0.	800	1.0	000		1.200		
				Freque	ncy								
Frequency													

Client/																
Dumfri Projec	es and Ga t name	alloway Coun	cil				Resu	lts £k						Results f	.k	
Dalbea Projec	ttie FPS / t referend	Appraisal ce		2015s2898				Opt	ion 1						Opti	on 2
Base d Scaling	ate for es factor (e	timates (year e.g. £m, £k, £)	0)	Sep-2015 £k		PV total cost	s (Low Intangi	Do Mi 1,6	nimum 609				PV total cost	Op s (Low Intangi	ion 2 (Rai 27	sed defence) 74
			Option 1	Do Minimum	Intangible -	TOTALS:	PV	PV	PV	Option 2	Option 3 (Rai	sed defence) in	TOTALS:	PV PV		PV
			Direct	Indirect	Low	0740.4	Direct	Indirect	Low	Direct	Indirect	Low	Cash	Capital Mai	nt	Other
		Discount	5419.2	349.9	303.6	0740.1	1442.7	09.4	11.1	693.096747	135.127906	240.929367	3160.13	105.13	35.90	53.06
0	2015	1.000	40.1	2.3	1.9	61.5	40.1	2.3	1.9	5.2	1.0	0.9	14.83	5.18	0.99	0.88
1 2	2016 2017	0.966 0.934	40.4 40.8	2.3	2.0	62.1 62.7	39.1 38.1	2.2	1.9 1.9	5.2 5.3	1.0	0.9	15.22 15.61	5.05	0.97	0.89
3 4	2018 2019	0.902 0.871	41.1 41.4	2.4	2.0	63.3 63.8	37.1 36.1	2.1	1.8	5.3 5.3	1.0	1.0	16.00 16.39	4.78	0.92	0.89
5	2020	0.842	41.7	2.4	2.1	64.4	35.1 34.2	2.0	1.7	5.4 5.4	1.0	1.1	16.78 17.18	4.53	0.87	0.89
7	2022	0.786	42.4	2.5	2.1	65.6	33.3	1.9	1.7	5.5	1.1	1.1	17.57	4.29	0.83	0.89
9	2023	0.734	43.0	2.5	2.1	66.8	31.6	1.9	1.6	5.5	1.1	1.2	18.35	4.10	0.78	0.88
10	2025	0.709	43.4	2.6	2.2	68.0	30.7	1.8	1.5	5.6	1.1	1.2	18.74	3.96	0.76	0.88
12 13	2027 2028	0.662 0.639	44.0 44.3	2.6 2.6	2.2	68.6 69.2	29.1 28.3	1.7	1.5	5.7 5.7	1.1	1.3	19.52 19.91	3.75	0.72	0.86
14 15	2029 2030	0.618 0.597	44.6 45.0	2.7	2.3	69.8 70.4	27.6 26.8	1.7	1.4	5.7 5.8	<u>1.1</u> 1.1	1.4	20.30 20.70	3.55 3.45	0.69	0.85
16 17	2031 2032	0.577 0.557	45.3 45.6	2.7	2.3	71.0 71.6	26.1 25.4	1.6	1.4	5.8 5.9	1.1	1.4	21.09 21.48	3.36 3.27	0.65	0.83
18 19	2033 2034	0.538	45.9 46.3	2.8	2.4	72.2	24.7	1.5	1.3	5.9 5.9	1.1	1.5	21.87	3.18	0.61	0.82
20 21	2035	0.503	46.6	2.8	2.4	73.4	23.4	1.4	1.2	6.0	1.2	1.6	22.65	3.01	0.58	0.80
22	2037	0.469	47.2	2.9	2.5	74.6	22.2	1.4	1.2	6.1	1.2	1.7	23.43	2.85	0.55	0.78
23	2038	0.433	47.8	2.9	2.5	75.8	21.0	1.3	1.1	6.1	1.2	1.7	23.82	2.69	0.54	0.76
25 26	2040 2041	0.423 0.409	48.2 48.5	3.0	2.6	76.4	20.4	1.3	1.1	6.2	1.2	1.8	24.61 25.00	2.62	0.51	0.74
27 28	2042 2043	0.395 0.382	48.8 49.2	3.0 3.1	2.6	77.5 78.1	19.3 18.8	1.2	1.0	6.3 6.3	1.2	1.8	25.39 25.78	2.48	0.48	0.72
29 30	2044 2045	0.369 0.356	49.5 49.8	3.1 3.1	2.7	78.7 79.3	18.3 17.7	1.1	1.0	6.3 6.4	1.2	1.9	26.17 26.56	2.34 2.28	0.45	0.70
31 32	2046	0.346	50.1 50.5	3.1	2.7	79.9	17.3	1.1	0.9	6.4	1.2	2.0	26.95 27.34	2.22	0.43	0.68
33	2048	0.326	50.8	3.2	2.8	81.1	16.6	1.0	0.9	6.5	1.3	2.0	27.74	2.12	0.41	0.67
35	2049	0.307	51.4	3.3	2.8	82.3	15.8	1.0	0.9	6.6	1.3	2.1	28.52	2.02	0.40	0.65
36 37	2051 2052	0.298	51.8 52.1	3.3	2.8	82.9	15.4	1.0	0.8	6.6	1.3	2.1	28.91 29.30	1.98	0.38	0.64
38 39	2053 2054	0.281 0.273	52.4 52.7	3.3	2.9	84.1 84.7	14.7 14.4	0.9	0.8	6.7 6.7	1.3	2.2	29.69 30.08	1.89	0.37	0.62
40 41	2055 2056	0.265 0.257	53.0 53.4	3.4 3.4	2.9	85.3 85.9	14.1 13.7	0.9	0.8	6.8 6.8	1.3	2.3	30.47 30.86	1.80	0.35	0.61
42 43	2057 2058	0.250	53.7 54.0	3.5 3.5	3.0 3.0	86.5 87.1	13.4	0.9	0.7	6.9 6.9	1.3	2.4	31.26 31.65	1.72	0.33	0.59
44	2059	0.236	54.3	3.5	3.0	87.7	12.8	0.8	0.7	6.9	1.4	2.4	32.04	1.64	0.32	0.57
46	2060	0.222	55.0	3.6	3.1	88.9	12.0	0.8	0.7	7.0	1.4	2.5	32.82	1.56	0.30	0.55
47	2062	0.218	55.6	3.6	3.1	90.1	11.9	0.8	0.7	7.1	1.4	2.5	33.60	1.49	0.30	0.55
49 50	2064 2065	0.203 0.197	56.0 56.3	3.7	3.2	90.6 91.2	11.4	0.7	0.6	7.1	1.4	2.6	33.99 34.38	1.45	0.28	0.53
51 52	2066 2067	0.192 0.186	56.6 56.9	3.7	3.2	91.8 92.4	10.8 10.6	0.7	0.6	7.2	1.4	2.7	34.77 35.17	1.38 1.35	0.27	0.51
53 54	2068 2069	0.181 0.175	57.2 57.6	3.8 3.8	3.3	93.0 93.6	10.3	0.7	0.6	7.3	1.4	2.7	35.56 35.95	1.32	0.26	0.49
55 56	2070	0.170	57.9 58.2	3.8	3.3	94.2 94.8	9.9	0.6	0.6	7.4	1.4	2.8	36.34	1.26	0.25	0.48
57	2072	0.160	58.5	3.9	3.4	95.4	9.4	0.6	0.5	7.5	1.5	2.9	37.12	1.20	0.23	0.46
59	2073	0.151	59.2	3.9	3.4	96.6	8.9	0.6	0.5	7.6	1.5	3.0	37.90	1.14	0.20	0.45
61	2075	0.147	59.5	4.0	3.4	97.2	8.5	0.6	0.5	7.6	1.5	3.0	38.69	1.09	0.22	0.44
62 63	2077 2078	0.138	60.2	4.0	3.5	98.4	8.3	0.6	0.5	7.7	1.5	3.1	39.08	1.06	0.21	0.42
64 65	2079 2080	0.130 0.127	60.8 61.1	4.1 4.1	3.5 3.6	99.6 100.2	7.9	0.5	0.5	7.8 7.8	1.5 1.5	3.1 3.2	39.86 40.25	1.01	0.20	0.41
66 67	2081 2082	0.123 0.119	61.1 61.1	4.1	3.6	100.2 100.2	7.5 7.3	0.5	0.4	7.8 7.8	1.5	3.2	40.25 40.25	0.96	0.19	0.39
68 69	2083 2084	0.116 0.112	61.1 61.1	4.1	3.6 3.6	100.2 100.2	7.1	0.5	0.4	7.8	1.5	3.2	40.25 40.25	0.90	0.18	0.37
70 71	2085	0.109	61.1 61.1	4.1	3.6	100.2	6.7	0.4	0.4	7.8	1.5	3.2	40.25	0.85	0.17	0.35
72	2087	0.103	61.1	4.1	3.6	100.2	6.3	0.4	0.4	7.8	1.5	3.2	40.25	0.80	0.16	0.33
74	2089	0.097	61.1	4.1	3.6	100.2	5.9	0.4	0.4	7.8	1.5	3.2	40.25	0.76	0.15	0.32
76	2090	0.094	61.1	4.1	3.6	100.2	5.6	0.4	0.3	7.8	1.5	3.2	40.25	0.73	0.14	0.30
77 78	2092 2093	0.090 0.087	61.1 61.1	4.1	3.6	100.2	5.5 5.3	0.4	0.3	7.8	1.5	3.2	40.25 40.25	0.70	0.14	0.28
79 80	2094 2095	0.085 0.083	61.1 61.1	4.1	3.6	100.2 100.2	5.2 5.1	0.3	0.3	7.8 7.8	<u>1.5</u> 1.5	3.2	40.25 40.25	0.67	0.13	0.27
81 82	2096 2097	0.081	61.1 61.1	4.1	3.6	100.2	5.0 4.8	0.3	0.3	7.8	1.5	3.2	40.25	0.63	0.12	0.26
83 84	2098	0.077	61.1	4.1	3.6	100.2	4.7	0.3	0.3	7.8	1.5	3.2	40.25	0.60	0.12	0.24
85	2100	0.074	61.1	4.1	3.6	100.2	4.5	0.3	0.3	7.8	1.5	3.2	40.25	0.57	0.12	0.24
87	2101	0.072	61.1	4.1	3.6	100.2	4.4	0.3	0.3	7.8	1.5	3.2	40.25	0.55	0.11	0.23
88 89	2103 2104	0.068	61.1 61.1	4.1	3.6 3.6	100.2	4.2	0.3	0.2	7.8	<u>1.5</u> 1.5	3.2	40.25	0.53	0.10	0.22
90 91	2105 2106	0.065 0.063	61.1 61.1	4.1 4.1	3.6 3.6	100.2 100.2	4.0	0.3	0.2	7.8 7.8	1.5 1.5	3.2 3.2	40.25 40.25	0.51	0.10	0.21
92 93	2107 2108	0.062 0.060	61.1 61.1	4.1	3.6	100.2 100.2	3.8 3.7	0.3	0.2	7.8	1.5	3.2	40.25	0.48	0.09	0.20
94 95	2109 2110	0.059 0.057	61.1 61.1	4.1	3.6	100.2 100.2	3.6	0.2	0.2	7.8 7.8	1.5	3.2	40.25	0.46	0.09	0.19
96 97	2111 2112	0.056	61.1 61.1	4.1	3.6	100.2	3.4	0.2	0.2	7.8	1.5	3.2	40.25	0.44	0.09	0.18
98 99	2113 2114	0.053	61.1 61.1	4.1	3.6	100.2	3.3	0.2	0.2	7.8	1.5	3.2	40.25	0.42	0.08	0.17
		3.002	01.1	4 .1	5.0	100.2	0.2	0.2	0.2	1.0	1.5	J.Z	10.20	0.71	0.00	0.10

Offices at

- Coleshill
- Doncaster
- Dublin
- Edinburgh
- Exeter
- Glasgow
- Haywards Heath
- Isle of Man
- Limerick
- Newcastle upon Tyne
- Newport
- Peterborough
- Saltaire
- Skipton
- Tadcaster
- Thirsk
- Wallingford
- Warrington

Registered Office

South Barn Broughton Hall SKIPTON North Yorkshire BD23 3AE

t:+44(0)1756 799919 e:info@jbaconsulting.com

Jeremy Benn Associates Ltd Registered in England 3246693

Visit our website www.jbaconsulting.com